Introduction to Biostatistics

Prof. Simantini Chattopadhyay
 Assistant Professor
 Department of Economics
 Taki Govt College

Part- I, Zoology Honours Paper-II, Module-2 Preliminary knowledge of quantification in Biology

Biostatistics

- The application of <u>statistics</u> to a wide range of topics in <u>biology</u>.
 - It is the science which deals with development and application of the most appropriate methods for the:
 - Collection of data.
 - Presentation of the collected data.
 - Analysis and interpretation of the results.
 Making decisions on the basis of such analysis

Role of statisticians

- To guide the design of an experiment or survey prior to data collection
- To analyze data using proper statistical procedures and techniques
- To present and interpret the results to researchers and other decision makers

Types of data

 \bigcirc

0

- Numerical presentation
- ² Graphical presentation
- ³Mathematical presentation

Tabular presentation	(simple – comp	lex)
Simple frequency di	istribution Table ((S.F.D.T.)
,	Title	
Name of variable (Units of variable)	Frequency	%
- - Categories -		
Total		

Table (I): Distribution of 50 patients at the surgical department of Alexandria hospital in May 2008 according to their ABO blood groups

Blood group	Frequency	%
Α	12	24
В	18	36
AB	5	10
0	15	30
Total	50	100

Table (II): Distribution of 50 patients at the surgical department of Alexandria hospital in May 2008 according to their age

Age	Frequency	%
(years)		
20-<30	12	24
30-	18	36
40-	5	10
50+	15	30
Total	50	100

Complex frequency distribution Table

Table (IV): Distribution of 60 patients at the chest department of Alexandria hospital in May 2008 according to smoking & lung cancer

Creative	Lung cancer				Total	
Smokin	positive		negative		TUtar	
5)	No.	%	No.	%	No.	%
Smoker	15	65.2	8	34.8	23	100
Non smoker	5	13.5	32	86.5	37	100
Total	20	33.3	40	66.7	60	100

2- Graphical presentation

Oraphs drawn using coordinates

- Line graph
- Frequency polygon
- Frequency curve
- Histogram
- Bar graph
- Scatter plot
- 2 Pie chart

3 Statistical maps

Line Graph

Figure (1): Maternal mortality rate of (country), 1960-2000

Frequency polygon

Age	Sex		Mid-point of interval
(years)	Males	Females	
20 - 30	3 (12%)	2 (10%)	(20+30) / 2 = 25
30 – 40	9 (36%)	6 (30%)	(30+40) / 2 = 35
40- 50	7 (8%)	5 (25%)	(40+50) / 2 = 45
50 - 60	4 (16%)	3 (15%)	(50+60) / 2 = 55
60 - 70	2 (8%)	4 (20%)	(60+70) / 2 = 65
Total	25(100%	20(100	
)	%)	

Figure (2): Distribution of 45 patients at (place), in (time) by age and sex

Frequency curve

Histogram

Distribution of a group of cholera patients by age

Age (years)	Frequency	%
25-	3	14.3
30-	5	23.8
40-	7	33.3
45-	4	19.0
60-65	2	9.5
Total	21	100

%

Bar chart

Bar chart

Pie chart

3-Mathematical presentation Summery statistics

 Measures of location
 1- Measures of central tendency
 2- Measures of non central locations (Quartiles, Percentiles)
 Measures of dispersion

Descriptive measures

- A <u>descriptive measure</u> is a single number that is used to describe a set of data.
- Descriptive measures include measures of central tendency and measures of dispersion.

Measures of Central Tendency

- <u>Central tendency</u> is a property of the data that they tend to be clustered about a center point.
- •Measures of central tendency include:
- mean (generally not part of the data set)
- median (may be part of the data set)
- mode (always part of the data set)

Measures of Dispersion

- **Dispersion** is a property of the data that they tend to be spread out.
- Measures of dispersion include:
- range
- variance
- standard deviation

Arithmetic mean

• The <u>mean</u> or <u>arithmetic mean</u> is the "average" which is obtained by adding all the values in a sample or population and dividing them by the number of values.

General formula--population mean

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$$

$$\mu = \text{population mean}$$

$$\Sigma = \text{summation sign}$$

$$x_i = \text{value of element i of the sample}$$

$$N = \text{population size}$$

General formula--sample mean

Properties of the mean

- 1. <u>Uniqueness</u> -- For a given set of data there is one and only one mean.
- 2. <u>Simplicity</u> -- The mean is easy to calculate.
- Affected by extreme values -- The mean is influenced by each value. Therefore, extreme values can distort the mean.

Median

- The <u>median</u> is the value that divides the set of data into two equal parts. It is the midpoint of the data set.
- •The number of values equal to or greater than the median equals the number of values less than or equal to the median.

Finding the median

1. Arrange (sort) the data in order

- of increasing value in a sorted list.
 - 2. Find the median.
 - a. Odd number of values (n is odd)

$$median = \frac{n+1}{2}$$

Finding the median

b. Even number of values (n is even)

> median = average of the two values in the middle

Properties of the median

- 1. **Uniqueness** -- There is only one median for each set of data.
- 2. <u>Simplicity</u> -- It is easy to calculate.
- 3. *Effect of extreme values* -- The median is not as drastically affected by extreme values as is the mean.

Mode

- The *mode* is the value that occurs most often in a set of data.
- It is possible to have more than one mode or no mode.

Variability of data

• <u>Dispersion</u> refers to the variety exhibited by the values of the data. The amount may be small when the values are close together.

Standard deviation SD

Range

- The <u>range</u> is the difference between the largest and smallest values in the set of observations.
- These values are often called the <u>maximum</u> and the <u>minimum</u>.

Variance

- Variance is used to measure the dispersion of values relative to the mean.
- When values are close to their mean (narrow range) the dispersion is less than when there is scattering over a wide range.

Calculation of the sample variance

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

- s^2 = sample variance
- x_i = individual value
- $\overline{\mathbf{x}}$ = sample mean
- n = number of values

Variance of a population

Degrees of freedom

- In computing the variance there are
 n 1 <u>degrees of freedom</u> because if
 n -1 values are known, the nth one is
 determined automatically.
- This is because all of the values of

(
$$\mathbb{X}_i$$
 - $\overline{\mathbb{X}}$ must add to zero.

Differences in calculations

Values of	$a_{s^2}^{-1} = a_{\sigma^2}^{-1}$ lifferen
because	<mark>د</mark> gides by n-1
whereas	des by N.

Sample standard deviation

The <u>standard deviation</u> is the square root of the variance. The standard deviation expresses the dispersion in terms of the original units. Since the variance of a sa_s^2 ple is , we take the square root.

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

Population Standard Deviation

For a population, the standard deviation is σ which is the square root of the population variance.

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

Manual Calculation of a Standard Deviation

Coefficient of variation

Coefficient of variation is a measure of the relative amount of variation as opposed to the absolute variation.

$$C.V. = \frac{s}{\overline{x}} (100)$$

C.V. is independent of the units of measure. It can be useful for comparing different results from people investigating the same variable.