
CHAPTER III 

Vector Spaces 

As usual, a collection of objects will be called a set. A member of the 
collection is also called an element of the set. It is useful in practice to 
use short symbols to denote certain sets. For instance we denote by R 
the set of all numbers. To say that "x is a number" or that "x is an 
element of R" amounts to the same thing. The set of n-tuples of 
numbers will be denoted by Rn. Thus" X is an element of Rn" and" X 
is an n-tuple" mean the same thing. Instead of saying that u is an 
element of a set S, we shall also frequently say that u lies in S and we 
write u E S. If Sand S' are two sets, and if every element of S' is an 
element of S, then we say that S' is a subset of S. Thus the set of 
rational numbers is a subset of the set of (real) numbers. To say that S 
is a subset of S' is to say that S is part of S'. To denote the fact that S 
is a subset of S', we write S c S'. 

If S b S 2 are sets, then the intersection of S 1 and S 2, denoted by 
S1 n S2, is the set of elements which lie in both S1 and S2. The union of 
S 1 and S 2, denoted by S 1 U S 2, is the set of elements which lie in S 1 or 

S2· 

III, §1. Definitions 

In mathematics, we meet several types of objects which can be added 
and multiplied by numbers. Among these are vectors (of the same 
dimension) and functions. It is now convenient to define in general a 
notion which includes these as a special case. 

A vector space V is a set of objects which can be added and multi­
plied by numbers, in such a way that the sum of two elements of V is 
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again an element of V, the product of an element of V by a number is an 
element of V, and the following properties are satisfied: 

VS 1. Given the elements u, v, w of V, we have 

(u + v) + w = u + (v + w). 

VS 2. There is an element of V, denoted by 0, such that 

for all elements u of V. 

VS 3. Given an element u of V, the element {- 1)u is such that 

u + (-l)u = o. 

VS 4. F or all elements u, v of V, we have 

u + v = v + u. 

VS 5. If c is a number, then c{u + v) = cu + cv. 

VS 6. If a, b are two numbers, then {a + b)v = av + bv. 

VS 7. If a, b are two numbers, then (ab)v = a{bv). 

VS 8. For all elements u of V, we have 1· u = u (1 here is the number 
one). 

We have used all these rules when dealing with vectors, or with func­
tions but we wish to be more systematic from now on, and hence have 
made a list of them. Further properties which can be easily deduced 
from these are given in the exercises and will be assumed from now on. 

The algebraic properties of elements of an arbitrary vector space are 
very similar to those of elements of R2, R3

, or Rn. Consequently it is 
customary to call elements of an arbitrary vector space also vectors. 

If u, v are vectors (i.e. elements of the arbitrary vector space V), then 
the sum 

u + {-1)v 

is usually written u - v. We also write - v instead of ( - 1 )v. 

Example 1. Fix two positive integers m, n. Let V be the set of all 
m x n matrices. We also denote V by Mat{m x n). Then V is a vector 
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space. It is easy to verify that all properties VS 1 through VS 8 are 
satisfied by our rules for addition of matrices and multiplication of 
matrices by numbers. The main thing to observe here is that addition of 
matrices is defined in terms of the components, and for the addition 
of components, the conditions analogous to VS 1 through VS 4 are 
satisfied. They are standard properties of numbers. Similarly, VS 5 
through VS 8 are true for multiplication of matrices by numbers, because 
the corresponding properties for the multiplication of numbers are true. 

Example 2. Let V be the set of all functions defined for all numbers. 
If f, g are two functions, then we know how to form their sum f + g. It 
is the function whose value at a number t is f(t) + g(t). We also know 
how to multiply f by a number c. It is the function cf whose values at a 
number t is cf(t). In dealing with functions, we have used properties 
VS 1 through VS 8 many times. We now realize that the set of functions 
is a vector space. 

The function f such that f(t) = 0 for all t is the zero function. We 
emphasize the condition for all t. If a function has some of its values 
equal to zero, but other values not equal to 0, then it is not the zero 
function. 

In practice, a number of elementary properties concerning addition of 
elements in a vector space are obvious because of the concrete way the 
vector space is given in terms of numbers, for instance as in the previous 
two examples. We shall now see briefly how to prove such properties 
just from the axioms. 

It is possible to add several elements of a vector space. Suppose we 
wish to add four elements, say u, v, w, z. We first add any two of them, 
then a third, and finally a fourth. Using the rules VS 1 and VS 4, we see 
that it does not matter in which order we perform the additions. This is 
exactly the same situation as we had with vectors. For example, we have 

(u + v) + w) + z = (u + (v + w») + z 

= (v + w) + u) + z 

= (v + w) + (u + z), etc. 

Thus it is customary to leave out the parentheses, and write simply 

u + v + w + z. 

The same remark applies to the sum of any number n of elements of V. 
We shall use 0 to denote the number zero, and 0 to denote the 

element of any vector space V satisfying property VS 2. We also call it 
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zero, but there is never any possibility of confusion. We observe that 
this zero element 0 is uniquely determined by condition VS 2. Indeed, if 

v + w = v 

then adding - v to both sides yields 

-v + v + w = -v + v = 0, 

and the left-hand side is just 0 + w = w, so w = o. 
Observe that for any element v in V we have 

Ov = o. 

Proof 
o = v + ( - l)v = (1 - l)v = Ov. 

Similarly, if c is a number, then 

cO = o. 

Proof We have cO = c(O + 0) = cO + cO. Add - cO to both sides 
to get cO = o. 

Subspaces 

Let V be a vector space, and let W be a subset of V. Assume that W 
satisfies the following conditions. 

(i) If v, ware elements of W, their sum v + w is also an element of 
W 

(ii) If v is an element of Wand c a number, then cv is an element of 
W 

(iii) The element 0 of V is also an element of W 

Then W itself is a vector space. Indeed, properties VS 1 through VS 8, 
being satisfied for all elements of V, are satisfied also for the elements of 
W. We shall call W a subspace of V. 

Example 3. Let V = Rn and let W be the set of vectors in V whose 
last coordinate is equal to O. Then W is a subspace of V, which we 
could identify with Rn - 1. 

Example 4. Let A be a vector in R3. Let W be the set of all elements 
B in R3 such that B· A = 0, i.e. such that B is perpendicular to A. Then 
W is a subspace of R3. To see this, note that O· A = 0, so that 0 is in 
W Next, suppose that B, C are perpendicular to A. Then 

(B + C)· A = B· A + C· A = 0, 
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so that B + C is also perpendicular to A. Finally, if x is a number, then 

(xB)·A = x(B·A) = 0, 

so that xB IS perpendicular to A. This proves that W is a subspace of 
R3. 

More generally, if A is a vector in Rn, then the set of all elements B in 
Rn such that B· A = 0 is a subspace of Rn. The proof is the same as 
when n = 3. 

Example 5. Let Sym(n x n) be the set of all symmetric n x n 
matrices. Then Sym(n x n) is a subspace of the space of all n x n 
matrices. Indeed, if A, B are symmetric and c is a number, then A + B 
and cA are symmetric. Also the zero matrix is symmetric. 

Example 6. If f, g are two continuous functions, then f + g is con­
tinuous. If c is a number, then cf is continuous. The zero function 
is continuous. Hence the continuous functions form a subspace of the 
vector space of all functions. 

If f, g are two differentiable functions, then their sum f + g is differen­
tiable. If c is a number, then cf is differentiable. The zero function is 
differentiable. Hence the differentiable functions form a subspace of the 
vector space of all functions. Furthermore, every differentiable function is 
continuous. Hence the differentiable functions form a subspace of the 
vector space of continuous functions. 

Example 7. Let V be a vector space and let U, W be subspaces. We 
denote by U n W the intersection of U and W, i.e. the set of elements 
which lie both in U and W. Then U n W is a subspace. For instance, if 
U, Ware two planes in 3-space passing through the origin, then in 
general, their intersection will be a straight line passing through the ori­
gin, as shown in Fig. 1. 
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Example 8. Let U, W be subspaces of a vector space V. By 

U+W 

we denote the set of all elements u + w with U E U and WE W. Then we 
leave it to the reader to verify that U + W is a subspace of V, said to be 
generated by U and W, and called the sum of U and W. 

Exercises III, § 1 

1. Let A l' ... ,A, be vectors in Rn. Let W be the set of vectors B in Rn such that 
B· Ai = 0 for every i = 1, ... ,r. Show that W is a subspace of Rn. 

2. Show that the following sets of elements in R2 form subspaces. 
(a) The set of all (x, y) such that x = y. 
(b) The set of all (x, y) such that x - y = o. 
(c) The set of all (x, y) such that x + 4y = O. 

3. Show that the following sets of elements in R 3 form subspaces. 
(a) The set of all (x, y, z) such that x + y + z = O. 
(b) The set of all (x, y, z) such that x = y and 2y = z. 
(c) The set of all (x, y, z) such that x + y = 3z. 

4. If U, Ware subspaces of a vector space V, show that U n Wand U + Ware 
subspaces. 

5. Let V be a subspace of Rn. Let W be the set of elements of Rn which 
are perpendicular to every element of V. Show that W is a subspace of Rn. 
This subspace W is often denoted by V 1., and is called V perp, or also the 
orthogonal complement of V. 

III, §2. Linear Combinations 

Let V be a vector space, and let v1, ••• ,Vn be elements of V. We shall say 
that V1, ••. ,Vn generate V if given an element v E V there exist numbers 
Xl' ... ,xn such that 

Example 1. Let E 1 , ••• ,En be the standard unit vectors in Rn
, so Ei 

has component 1 in the i-th place, and component 0 in all other places. 
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Then E l , ... ,En generate Rn. Proof: gIven X = (Xl' ... ,xn) ERn. Then 

n 

X = L xiEi, 
i= 1 

so there exist numbers satisfying the condition of the definition. 
Let V be an arbitrary vector space, and let V l , ... ,Vn be elements of V. 

Let Xl' ... ,xn be numbers. An expression of type 

is called a linear combination of vl , ... ,Vn • The numbers Xl'." ,Xn are 
then called the coefficients of the linear combination. 

The set of all linear combinations of Vl' ... ,Vn is a subspace of V. 

Proof Let W be the set of all such linear combinations. Let Yl'··· ,Yn 
be numbers. Then 

(X 1 V 1 + ... + Xn vn) + (y 1 V 1 + . .. + Y n vn) 

= (Xl + Yl)V l + ... + (xn + Yn)vn· 

Thus the sum of two elements of W is again an element of W, i.e. a 
linear combination of Vl' ... ,Vn. Furthermore, if c is a number, then 

is a linear combination of V l , ... ,Vn , and hence is an element of W 
Finally, 

o == OV l + ... + OVn 

is an element of W This proves that W is a subspace of V. 

The subspace W consisting of all linear combinations of V l , ... ,Vn IS 
called the subspace generated by V l ,.·. ,Vn • 

Example 2. Let V l be a non-zero element of a vector space V, and let 
w be any element of V. The set of elements 

with tER 
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is called the line passing through w in the direction of V1• We have al­
ready met such lines in Chapter I, §5. If w = 0, then the line consisting 
of all scalar multiples tV 1 with t E R is a subspace, generated by V1• 

Let VI' v2 be elements of a vector space V, and assume that neither is 
a scalar multiple of the other. The subspace generated by V1 , V2 is called 
the plane generated by VI' V2 • It consists of all linear combinations 

with t 1, t2 arbitrary numbers. 

This plane passes through the origin, as one sees by putting t 1 = t2 = o. 

Plane passing 
through the origin 

Figure 2 

We obtain the most general notion of a plane by the following opera­
tion. Let S be an arbitrary subset of V. Let P be an element of V. If we 
add P to all elements of S, then we obtain what is called the translation 
of S by P. It consists of all elements P + V with V in S. 

Example 3. Let V1, V2 be elements of a vector space V such that 
neither is a scalar multiple of the other. Let P be an element of V. We 
define the plane passing through P, parallel to V 1, V2 to be the set of all 
elements 

where t 1, t2 are arbitrary numbers. This notion of plane is the analogue, 
with two elements VI' v2 , of the notion of parametrized line considered in 
Chapter I. 

Warning. Usually such a plane does not pass through the orIgIn, as 
shown on Fig. 3. Thus such a plane is not a subspace of V. If we take 
P = 0, however, then the plane is a subspace. 
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o~ ______________ __ 

Plane not passing 
through the origin 

Figure 3 

[III, §2] 

Sometimes it is interesting to restrict the coefficients of a linear com­
bination. We give a number of examples below. 

Example 4. Let V be a vector space and let v, u be elements of V. We 
define the line segment between v and v + u to be the set of all points 

v + tu, 0 < t < 1. 

This line segment is illustrated in the following picture. 

v+u 

v+tu 

v Figure 4 

For instance, if t = !, then v + !u is the point midway between v and 
v + u. Similarly, if t = t, then v + tu is the point one third of the way 
between v and v + u (Fig. 5). 

v+u v+u 

v+!u 
v+iu 

v+tu 

v v 

(a) (b) 

Figure 5 
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If v, ware elements of V, let u = w - v. Then the line segment 
between v and w is the set of all points v + tu, or 

v + t(w - v), o < t < 1. 

w 

v+t(w-v) 

v 

Figure 6 

Observe that we can rewrite the expression for these points in the form 

(1) (1 - t)v + tw, o < t < 1, 

and letting s = 1 - t, t = 1 - s, we can also write it as 

sv + (1 - s)w, O<s<1. 

Finally, we can write the points of our line segment in the form 

(2) 

Indeed, letting t = t 2 , we see that every point which can be written in 
the form (2) satisfies (1). Conversely, we let t 1 = 1 - t and t2 = t and see 
that every point of the form (1) can be written in the form (2). 

Example 5. Let v, w be elements of a vector space V. Assume that 
neither is a scalar multiple of the other. We define the parallelogram 
spanned by v, w to be the set of all points 

o < ti < 1 for i = 1, 2. 

This definition is clearly justified since t 1 v is a point of the segment 
between 0 and v (Fig. 7), and t 2 W is a point of the segment between 0 
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and w. For all values of t 1, t2 ranging independently between 0 and 1, 
we see geometrically that t 1 V + t 2 W describes all points of the parallelo­
gram. 

v+w 

Figure 7 

We obtain the most general parallelogram (Fig. 8) by taking the 
translation of the parallelogram just described. Thus if u is an element of 
V, the translation by u of the parallelogram spanned by v and w consists 
of all points 

o < ti < 1 for i = 1, 2. 

u+v+w 

Figure 8 

Similarly, in higher dimensions, let v1, V2 , V3 be elements of a vector 
space V. We define the box spanned by these elements to be the set of 
linear combinations 

with 

We draw the picture when V1, V2 , V3 are in general position: 
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Figure 9 

There may be degenerate cases, which will lead us into the notion of 
linear dependence a little later. 

Exercises III, §2 

1. Let A 1' ... ,Ar be generators of a subspace V of Rn. Let W be the set of all 
elements of Rn which are perpendicular to A 1, ... ,Ar. Show that the vectors of 
Ware perpendicular to every element of V. 

2. Draw the parallelogram spanned by the vectors (1, 2) and (-1, 1) in R2. 

3. Draw the parallelogram spanned by the vectors (2, -1) and (1,3) in R2. 

III, §3. Convex Sets 

Let S be a subset of a vector space V. We shall say that S is convex 
if given points P, Q in S then the line segment between P and Q is 
contained in S. In Fig. 10, the set on the left is convex. The set on the 
right is not convex since the line segment between P and Q is not entir­
ely contained in S. 

Convex set Not convex 

Figure 10 

We recall that the line segment between P and Q consists of all points 

(1 - t)P + tQ with o < t < 1. 

This gives us a simple test to determine whether a set is convex or not. 
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Example 1. Let S be the parallelogram spanned by two vectors V1, V2' 
so S is the set of linear combinations 

with 

We wish to prove that S is convex. Let 

and 

be points in S. Then 

(1 - t)P + tQ = (1 - t)(t 1V1 + t2V2) + t(S lV1 + S2V2) 

= (1 - t)t 1V1 + (1 - t)t2V2 + ts1v 1 + ts2v2 

where 
and 

But we have 
o < (1 - t)tl + tS 1 < (1 - t) + t = 1 

and 
o < (1 - t)t2 + tS2 < (1 - t) + t = 1. 

Hence 
with 

This proves that (1 - t)P + tQ is in the parallelogram, which is therefore 
convex. 

Example 2. Half planes. Consider a linear equation like 

2x - 3y = 6. 

This is the equation of a line as shown on Fig. 11. 

2x - 3y = 6 

Figure 11 
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The inequalities 

2x - 3y < 6 and 2x - 3y > 6 

determine two half planes; one of them lies below the line and the other 
lies above the line, as shown on Fig. 12. 

Figure 12 

Let A = (2, - 3). We can, and should write the linear inequalities in 
the form 

A·X> 6 and A·X < 6, 

where X = (x, y). Prove as Exercise 2 that each half plane is convex. 
This is clear intuitively from the picture, at least in R2, but your proof 
should be valid for the analogous situation in Rn. 

Theorem 3.1. Let P l' ... ,P n be points oj' a vector space V. Let S be the 
set of all linear combinations 

with 0 < ti and t1 + ... + tn = 1. Then S is convex. 

Proof Let 

and 

t1 + ... + tn = 1, 

Sl + ... + Sn = 1. 
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Let 0 < t < 1. Then: 

We have 0 < (1 - t)ti + tSi for all i, and 

(1 - t)t1 + tS 1 + ... + (1 - t)tn + tSn 

= (1 - t)( t 1 + ... + t n) + t( S 1 + . . . + Sn) 

= (1 - t) + t 
= 1. 

This proves our theorem. 

[III, §3] 

In the next theorem, we shall prove that the set of all linear combina­
tions 

with 

is the smallest convex set containing P 1, ... ,Pn • For example, suppose 
that P 1, P 2, P 3 are three points in the plane not on a line. Then it is 
geometrically clear that the smallest convex set containing these three 
points is the triangle having these points as vertices. 

Figure 13 

Thus it is natural to take as definition of a triangle the following pro­
perty, valid in any vector space. 

Let P 1, P 2, P 3 be three points in a vector space V, not lying on a 
line. Then the triangle spanned by these points is the set of all combina­
tions 

When we deal with more than three points, then the set of linear 
combinations as in Theorem 3.1 looks as in the following figure. 
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Figure 14 

We shall call the convex set of Theorem 3.1 the convex set spanned by 
P 1, ... ,P n. Although we shall not need the next result, it shows that this 
convex set is the smallest convex set containing all the points P 1, ... ,P n. 

Omit the proof if you can't handle the argument by induction. 

Theorem 3.2. Let P l' ... ,P n be points of a vector space V. Any convex 
set which contains P l' ... ,P n also contains all linear combinations 

with 0 ~ ti for all i and t 1 + ... + tn == 1. 

Proof We prove this by induction. If n == 1, then t 1 == 1, and our 
assertion is obvious. Assume the theorem proved for some integer 
n - 1 ~ 1. We shall prove it for n. Let t l' ... ,tn be numbers satisfying 
the conditions of the theorem. Let S' be a convex set containing 
p 1, ... ,Pn • We must show that S' contains all linear combinations 

If tn == 1, then our assertion is trivial because t1 == ... == tn- 1 == o. Sup­
pose that tn i= 1. Then the linear combination t 1 P 1 + ... + tn P n is equal 
to 

Let 
t· 1 

s· ==--
1 1 - t. 

1 

for i == 1, ... ,n - 1. 

Then Si ~ 0 and s 1 + ... + sn _ 1 == 1 so that by induction, we conclude 
that the point 
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lies in S'. But then 

lies in S' by definition of a convex set, as was to be shown. 

Exercises III, §3 

1. Let S be the parallelogram consIstIng of all linear combinations t 1 V 1 + t 2 v2 

with 0 ~ t 1 ~ 1 and 0 ~ t2 ~ 1. Prove that S is convex. 

2. Let A be a non-zero vector in Rn and let c be a fixed number. Show that the 
set of all elements X in Rn such that A· X ~ c is convex. 

3. Let S be a convex set in a vector space. If c is a number, denote by cS the 
set of all elements cv with v in S. Show that cS is convex. 

4. Let S 1 and S2 be convex sets. Show that the intersection SIn S2 is convex. 

5. Let S be a convex set in a vector space V. Let w be an arbitrary element of 
V. Let w + S be the set of all elements w + v with v in S. Show that w + S is 
convex. 

III, §4. Linear Independence 

Let V be a vector space, and let Vb ... ,vn be elements of V. We shall say 
that Vb ... ,Vn are linearly dependent if there exist numbers ab ... ,an not 
all equal to Osuch that 

If there do not exist such numbers, then we say that VI' ... ,Vn are linearly 
independent. In other words, vectors Vb ... ,Vn are linearly independent if 
and only if the following condition is satisfied: 

Let a1 , ••• ,an be numbers such that 

then ai = ° for all i = 1, ... ,no 

Example 1. Let V = Rn and consider the vectors 

El =(1,0, ... ,0) 

En = (0, 0, ... ,1). 
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Then E1, ... ,En are linearly independent. Indeed, let ab ... ,an be numbers 
such that a1E 1 + ... + anEn = O. Since 

it follows that all ai = O. 

Example 2. Show that the vectors (1, 1) and (- 3, 2) are linearly inde­
pendent. 

Let a, b be two numbers such that 

a( 1, 1) + b( - 3, 2) = O. 

Writing this equation in terms of components, we find 

a - 3b = 0, a + 2b = O. 

This is a system of two equations which we solve for a and b. Sub­
tracting the second from the first, we get - 5b = 0, whence b = o. 
Substituting in either equation, we find a = O. Hence, a, b are both 0, 
and our vectors are linearly independent. 

If elements v1, ••• ,Vn of V generate V and in addition are linearly inde­
pendent, then {v 1, .•. ,vn } is called a basis of V. We shall also say that 
the elements V1, ••• ,Vn constitute or form a basis of V. 

Example 3. The vectors E b ... ,En of Example 1 form a basis of Rn. 
To prove this we have to prove that they are linearly independent, which 
was already done in Example 1; and that they generate Rn. Given an 
element A = (a 1, ••• ,an) of Rn we can write A as a linear combination 

so by definition, E 1 , ••• ,En generate Rn. Hence they form a basis. 

However, there are many other bases. Let us look at n = 2. We shall 
find out that any two vectors which are not parallel form a basis of R2. 
Let us first consider an exam pIe. 

If VI' V2 are as drawn, they 
form a basis of R2. 

Figure 15 
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Example 4. Show that the vectors (1, 1) and (- 1, 2) form a basis of 
R2. 

We have to show that they are linearly independent and that they 
generate R2. To prove linear independence, suppose that a, bare 
numbers such that 

a(l, 1) + b( -1, 2) = (0, 0) 

Then 
a - b = 0, a + 2b = O. 

Subtracting the first equation from the second yields 3b = 0, so that 
b = O. But then from the first equation, a = 0, thus proving that our 
vectors are linearly independent. 

Next, we must show that (1,1) and (-1,2) generate R2. Let (s, t) be 
an arbitrary element of R2. We have to show that there exist numbers x, 
y such that 

x(l, 1) + y( -1,2) = (s, t). 

In other words, we must solve the system of equations 

x - y = s, 

x + 2y = t. 

Again subtract the first equation from the second. We find 

whence 

and finally 

3y = t - s, 

t-s 
y=-3-' 

t - s 
x = y + s = -3- + s. 

This proves that (1, 1) and (-1,2) generate R2, and concludes the proof 
that they form a basis of R2. 

The general story for R 2 is expressed in the following theorem. 

Theorem 4.1. Let (a, b) and (c, d) be two vectors in R2. 

(i) They are linearly dependent if and only if ad - bc = O. 
(ii) If they are linearly independent, then they form a basis of R2. 
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Proof First work it out as an exercise (see Exercise 4). If you can't 
do it, you will find the proof in the answer section. It parallels closely 
the procedure of Example 4. 

Let V be a vector space, and let {v 1, ••• ,vn) be a basis of V. The 
elements of V can be represented by n-tuples relative to this basis, as 
follows. If an element v of V is written as a linear combination 

of the basis elements, then we call (x l' ... ,xn) the coordinates of v with 
respect to our basis, and we call Xi the i-th coordinate. The coordinates 
with respect to the usual basis E 1, ... ,En of Rn are simply the coordinates 
as defined in Chapter I, §1. 

The following theorem shows that there can only be one set of co­
ordinates for a given vector. 

Theorem 4.2. Let V be a vector space. Let v1, ••• ,Vn be linearly inde­
pendent elements of V. Let X b ... ,Xn and Yl' ... ,Yn be numbers such that 

Then we must have Xi == Yi for all i == 1, ... ,no 

Proof Subtract the right-hand side from the left-hand side. We get 

We can write this relation also in the form 

By definition, we must have Xi - Yi == 0 for all i == 1, ... ,n, thereby prov­
ing our assertion. 

The theorem expresses the fact that when an element is written as a 
linear combination of v1, ... ,vn , then its coefficients Xl' ... ,Xn are uniquely 
determined. This is true only when V1, ... ,Vn are linearly independent. 

Example 5. Find the coordinates of (1,0) with respect to the two 
vectors (1, 1) and (-1,2). 

We must find numbers a, b such that 

a(l, 1) + b( -1,2) == (1,0). 
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Writing this equation in terms of coordinates, we find 

a - b = 1, a + 2b = O. 

Solving for a and b in the usual manner yields b = - k and a = ~. 
Hence the coordinates of (1,0) with respect to (1,1) and (-1,2) are 
(~, -1)· 

Example 6. The two functions et
, e2t are linearly independent. To 

prove this, suppose that there are numbers a, b such that 

aet + be2t = 0 

(for all values of t). Differentiate this relation. We obtain 

aet + 2be2t = o. 

Subtract the first from the second relation. We obtain be2t = 0, and hence 
b = O. From the first relation, it follows that aet = 0, and hence a = O. 
Hence et

, e2t are linearly independent. 

Example 7. Let V be the vector space of all functions of a variable t. 
Let i1' ... ,in be n functions. To say that they are linearly dependent is to 
say that there exist n numbers a1, ••• ,an not all equal to 0 such that 

for all values of t. 

Warning. We emphasize that linear dependence for functions means 
that the above relation holds for all values of t. For instance, consider 
the relation 

a sin t + b cos t = 0, 

where a, b are two fixed numbers not both zero. There may be some 
values of t for which the above equation is satisfied. For instance, if 
a =f=. 0 we then can solve 

sin t b 
---- , 

a cos t 

or in other words, tan t = b/a to get at least one solution. However, the 
above relation cannot hold for all values of t, and consequently sin t, 
cos t are linearly independent, as functions. 
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Example 8. Let V be the vector space of functions generated by the 
two functions el

, e2l
• Then the coordinates of the function 

3el + 5e2l 

with respect to the basis {e l
, e2l

} are (3, 5). 

When dealing with two vectors v, w there is another convenient way 
of expressing linear independence. 

Theorem 4.3. Let v, w be elements of a vector space V. They are 
linearly dependent if and only if one of them is a scalar multiple of the 
other, i.e. there is a number c =f=. 0 such that we have v = cw or w = cv. 

Proof Left as an exercise, cf. Exercise 5. 

In the light of this theorem, the condition imposed in various 
examples in the preceding section could be formulated in terms of two 
vectors being linearly independent. 

Exercises III, §4 

1. Show that the following vectors are linearly independent. 
(a) (1,1,1) and (0,1, -2) (b) (1,0) and (1,1) 
(c) (-1, 1,0) and (0, 1, 2) (d) (2, -1) and (1, 0) 
(e) (n,O) and (0, 1) (f) (1, 2) and (1, 3) 
(g) (1,1,0), (1,1,1), (h) (0, 1, 1), (0,2,1), 

and (0, 1, -1) and (1, 5, 3) 
2. Express the given vector X as a linear combination of the given vectors A, B, 

and find the coordinates of X with respect to A, B. 
(a) X = (1, 0), A = (1, 1), B = (0, 1) 
(b) X = (2, 1), A = (1, - 1), B = (1, 1) 
(c) X = (1, 1), A = (2, 1), B = ( -1,0) 
(d) X = (4,3), A = (2,1), B = (-1,0) 

3. Find the coordinates of the vector X with respect to the vectors A, B, C. 
(a) X = (1,0,0), A = (1, 1, 1), B = (-1, 1,0), C = (1,0, -1) 
(b) X = (1, 1, 1), A = (0, 1, -1), B = (1, 1, 0), C = (1, 0, 2) 
(c) X = (0,0, 1), A = (1, 1, 1), B = (-1, 1,0), C = (1,0, -1) 

4. Let (a, b) and (e, d) be two vectors in R2. 
(i) If ad - be #- 0, show that they are linearly independent. 

(ii) If they are linearly independent, show that ad - be #- 0. 
(iii) If ad - be #- ° show that they form a basis of R 2 • 

5. (a) Let v, w be elements of a vector space. If v, ware linearly dependent, 
show that there is a number e such that w = ev, or v = ew. 

(b) Conversely, let v, w be elements of a vector space, and assume that there 
exists a number e such that w = ev. Show that v, ware linearly depen­
dent. 
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6. Let A l , •.. ,A, be vectors in Rn, and assume that they are mutually perpendi­
cular, in other words Ai..l Aj if i #- j. Also assume that none of them is O. 
Prove that they are linearly independent. 

7. Consider the vector space of all functions of a variable t. Show that the 
following pairs of functions are linearly independent. 
(a) 1,t (b) t,t 2 (c) t,t4 (d) et,t (e) tet,e2t (f) sint,cost 
(g) t, sin t (h) sin t, sin 2t (i) cos t, cos 3t 

8. Consider the vector space of functions defined for t > O. Show that the fol­
lowing pairs of functions are linearly independent. 
(a) t, lit (b) et, log t 

9. What are the coordinates of the function 3 sin t + 5 cos t = f(t) with respect 
to the basis {sin t, cos t}? 

10. Let D be the derivative dldt. Let J(t) be as in Exercise 9. What are the 
coordinates of the function DJ(t) with respect to the basis of Exercise 9? 

In each of the following cases, exhibit a basis for the given space, and prove 
that it is a basis. 

11. The space of 2 x 2 matrices. 
12. The space of m x n matrices. 
13. The space of n x n matrices all of whose components are 0 except possibly 

the diagonal components. 

14. The upper triangular matrices, i.e. matrices of the following type: 

all al2 ... a l ) 

o a22 ... a 2n .. . . 

o 0 ann 

15. ( a) The space of symmetric 2 x 2 matrices. 
(b) The space of symmetric 3 x 3 matrices. 

16. The space of symmetric n x n matrices. 

III, §5. Dimension 

We ask the question: Can we find three linearly independent elements in 
R 2 ? For instance, are the elements 

A = (1, 2), B = ( - 5, 7), C = (10,4) 

linearly independent? If you write down the linear equations expressing 
the relation 

xA + yB + zC = 0, 
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you will find that you can solve them for x, y, z not equal to O. Namely, 
these equations are: 

x - 5y + 10z = 0, 

2x + 7 y + 4z = O. 

This is a system of two homogeneous equations in three unknowns, and 
we know by Theorem 2.1 of Chapter II that we can find a non-trivial 
solution (x, y, z) not all equal to zero. Hence A, B, C are linearly depen­
dent. 

We shall see in a moment that this is a general phenomenon. In Rn, 
we cannot find more than n linearly independent vectors. Furthermore, 
we shall see that any n linearly independent elements of Rn must gener­
ate Rn, and hence form a basis. Finally, we shall also see that if one 
basis of a vector space has n elements, and another basis has m elements, 
then m = n. In short, two bases must have the same number of elements. 
This property will allow us to define the dimension of a vector space 
as the number of elements in any basis. We now develop these ideas 
systematically. 

Theorem 5.1. Let V be a vector space, and let {VI' ... ,Vm} generate V. 
Let WI' ... ,wn be elements of V and assume that n > m. Then WI'· .. 'Wn 
are linearly dependent. 

Proof Since {VI' ... ,Vm} generate V, there exist numbers (a ij) such that 
we can write 

If Xl' ... ,Xn are numbers, then 

XIW I + ... + XnWn 

= (Xl all + ... + xnaln)V I + ... + (Xl amI + ... + Xnamn)Vm 

(just add up the coefficients of VI' ... ,Vm vertically downward). According 
to Theorem 2.1 of Chapter II, the system of equations 

xla ll + ... + xna ln = 0 . . 

has a non-trivial solution, because n > m. In VIew of the preceding 
remark, such a solution (Xl' ... ,Xn ) is such that 

as desired. 
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Theorem 5.2. Let V be a vector space and suppose that one basis has n 
elements, and another basis has m elements. Then m = n. 

Proof We apply Theorem 5.1 to the two bases. Theorem 5.1 implies 
that both alternatives n > m and m > n are impossible, and hence m = n. 

Let V be a vector space having a basis consisting of n elements. We 
shall say that n is the dimension of V. If V consists of 0 alone, then V 
does not have a basis, and we shall say that V has dimension O. 

We may now reformulate the definitions of a line and a plane in 
an arbitrary vector space V. A line passing through the origin is 
simply a one-dimensional subspace. A plane passing through the origin 
is simply a two-dimensional subspace. 

An arbitrary line is obtained as the translation of a one-dimensional 
subspace. An arbitrary plane is obtained as the translation of a two­
dimensional subspace. When a basis {VI} has been selected for a one­
dimensional space, then the points on a line are expressed in the usual 
form 

P + t1v1 with all possible numbers t 1 • 

When a basis {v 1, v2 } has been selected for a two-dimensional space, then 
the points on a plane are expressed in the form 

Let {VI' ... ,vn} be a set of elements of a vector space V. Let r be a 
positive integer < n. We shall say that {v 1, ••• ,vr } is a maximal subset of 
linearly independent elements if V 1, ••• ,Vr are linearly independent, and if 
in addition, given any Vi with i > r, the elements V 1, ... ,Vr , Vi are linearly 
dependent. 

The next theorem gives us a useful criterion to determine when a set 
of elements of a vector space is a basis. 

Theorem 5.3. Let {V l' ... ,vn} be a set of generators of a vector space V. 
Let {v 1, ••• ,vr } be a maximal subset of linearly independent elements. 
Then {v 1, .•• ,vr } is a basis of v. 

Proof We must prove that v1, ••. ,Vr generate V. We shall first prove 
that each Vi (for i > r) is a linear combination of V 1, .•• ,Vr • By hypothe­
sis, given Vb there exists numbers Xl' ... ,Xr , Y not all 0 such that 
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Furthermore, y =1= 0, because otherwise, we would have a relation of lin­
ear dependence for V 1, ••• ,Vr • Hence we can solve for Vi' namely 

thereby showing that Vi is a linear combination of V 1, ••• ,Vr • 

Next, let V be any element of V. There exist numbers c 1, ... 'Cn such 
that 

In this relation, we can replace each Vi (i > r) by a linear combination of 
V1, ••• ,Vr • If we do this, and then collect terms, we find that we have 
expressed V as a linear combination of Vb ... ,vr • This proves that 
v1, ... ,vr generate V, and hence form a basis of V. 

We shall now give criteria which allow us to tell when elements of a 
vector space constitute a basis. 

Let v1, ... ,Vn be linearly independent elements of a vector space V. We 
shall say that they form a maximal set of linearly independent elements of 
V if given any element w of V, the elements w, V 1, ••• ,Vn are linearly 
dependent. 

Theorem 5.4. Let V be a vector space, and {v 1, ... ,vn} a maximal set of 
linearly independent elements of V. Then {v 1, ••• ,vn} is a basis of v. 

Proof We must now show that v1, ••• ,Vn generate V, i.e. that every 
element of V can be expressed as a linear combination of V1, ••• ,vn • Let w 
be an element of V. The elements w, V 1, ••• ,Vn of V must be linearly 
dependent by hypothesis, and hence there exist numbers xo, X b ... ,Xn not 
all ° such that 

We cannot have Xo = 0, because if that were the case, we would obtain a 
relation of linear dependence among Vb". ,vn• Therefore we can solve 
for w in terms of V1, ••• ,Vn , namely 

Xl Xn 
W = - - V1 - ••• - - Vn • 

Xo Xo 

This proves that w is a linear combination of V1, ••• ,Vn , and hence that 
{V1' ... ,vn} is a basis. 

Theorem 5.5. Let V be a vector space of dimension n, and let V 1, ... ,Vn 

be linearly independent elements of V. Then V1, ••• ,vn constitute a basis 
of v. 
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Proof According to Theorem 5.1., {VI' ... ,Vn} is a maximal set of 
linearly independent elements of V. Hence it is a basis by Theorem 5.4. 

Theorem 5.6. Let V be a vector space of dimension n and let W be a 
subspace, also of dimension n. Then W = V. 

Proof. A basis for W must also be a basis for V. 

Theorem 5.7. Let V be a vector space of dimension n. Let r be a 
positive integer with r < n, and let VI' ... ,vr be linearly independent ele­
ments of V. Then one can find elements Vr + I' ... ,Vn such that 

is a basis of v. 

Proof Since r < n we know that {VI' ... ,Vr} cannot form a basis of V, 
and thus cannot be a maximal set of linearly independent elements of V. 
In particular, we can find vr + I in V such that 

are linearly independent. If r + 1 < n, we can repeat the argument. We 
can thus proceed stepwise (by induction) until we obtain n linearly inde­
pendent elements {VI' ... 'Vn}. These must be a basis by Theorem 5.4, and 
our corollary is proved. 

Theorem 5.S. Let V be a vector space having a basis conslstlng of n 
elements. Let W be a subspace which does not consist of 0 alone. Then 
W has a basis, and the dimension of W is < n. 

Proof Let WI be a non-zero element of W. If {w I} is not a maximal 
set of linearly independent elements of W, we can find an element W2 of 
W such that WI' W2 are linearly independent. Proceeding in this manner, 
one element at a time, there must be an integer m :s n such that we can 
find linearly independent elements WI' W 2, ... 'Wm' and suc!'l that 

is a maximal set of linearly independent elements of W (by Theorem 5.1 
we cannot go on indefinitely finding linearly independent elements, and 
the number of such elements is at most n). If we now use Theorem 5.4, 
we conclude that {w1, ... ,wm} is a basis for W. 





Theorem 2 (First isomorphism theorem). Let V be a vector space and T : V →W a linear transformation.
Then T induces an isomorphism τ : V/ ker(T )→ img(T ) defined by

τ(v + ker(T )) = T (v).

Proof. First of all, we need to make sure this makes sense. Since we’re defining τ on the coset v+ker(T ) in
terms of the representative v, we need to check well-definedness, i.e. that if v+ker(T ) = v′+ker(T ) then the
values T (v) and T (v′) we’re trying to assign as outputs are equal. But v, v′ being in the same coset means
v′ − v is in ker(T ), and thus

T (v′) = T ((v′ − v) + v) = T (v′ − v) + T (v) = 0 + T (v) = T (v).

So the map is well-defined. And since all of the values T (v) lie inside of img(T ) by definition, we don’t have
any problems with the codomain either.

So τ is a well-defined function; to show it’s an isomorphism we need to show that it’s linear, that it’s
injective, and that it’s surjective. All of these are pretty straightforward. Linearity follows from linearity of
T :

τ
(
(v+ker(T ))+(v′+ker(T ))

)
= τ(v+v′+ker(T )) = T (v+v′) = T (v)+T (v′) = τ(v+ker(T ))+τ(v′+ker(T )),

τ
(
a(v + ker(T ))

)
= τ(av + ker(T )) = T (av) = a · T (v) = aτ(v + ker(T )).

For injectivity, we need to check that if τ(v + ker(T )) = 0 then v + ker(T ) = 0; but this is basically trivial
because if τ(v + ker(T )) = T (v) = 0 then v ∈ ker(T ) by definition. For surjectivity, any element of img(T )
can be written as T (v) for some v ∈ V and thus is equal to τ(v + img(T )).

We can think of the first isomorphism theorem as a “refined version” of the rank-nullity theorem: it
gives us an explicit, specific way of constructing an isomorphism V/ ker(T ) ∼= img(T ), and knowing this
isomorphism tells us dimV/ ker(T ) = dim img(T ) (which is a rephrasing of the rank-nullity theorem).

If we started with the rank-nullity theorem instead, the fact that dimV/ ker(T ) = dim img(T ) tells us
that there is some way to construct an isomorphism V/ ker(T ) = img(T ), but doesn’t tell us anything much
about what such an isomorphism would look like. The first isomorphism theorem does tell us what the
isomorphism is, and shows that it comes pretty directly from T itself.

The universal mapping property. If you go back to the proof of the first isomorphism theorem, really
most of the work is in showing that if we start with T : V → W , then we get a well-defined “induced map”
τ : V/ ker(T )→ img(T ). That sort of argument works in a bit more generality, which gives us the following
important result:

Theorem 3 (Universal mapping property for quotient spaces). Let F be a field, V,W vector spaces over
F , T : V → W a linear transformation, and U ⊆ V a subspace. If U ⊆ ker(T ), then there is a unique
well-defined linear transformation τ : V/U →W given by τ(v + U) = T (v).

If π : V → V/U is the canonical projection (i.e. the linear transformation given by π(v) = v +W ), this
can be rephrased as saying that there’s a unique well-defined linear transformation τ satisfying τ ◦ π = T .
We can think of this as saying T “factors through” the quotient space V/U : starting with a map V → W ,
we can actually split it up as two maps V → V/U →W .

Proof. This is basically the same proof as above (minus the last few lines). To see τ is well-defined on a coset
v + U we need to check that if v + U = v′ + U then T (v) = T (v′); but this follows because v + U = v′ + U
means v− v′ ∈ U and thus v− v′ ∈ ker(T ) because U is contained in the kernel. Then we have T (v− v′) = 0
by definition, and rearranging and using linearity gives T (v) = T (v′). Linearity is then a formal consequence
of linearity of T :

τ
(
(v + U) + (v′ + U)

)
= τ(v + v′ + U) = T (v + v′) = T (v) + T (v′) = τ(v + U) + τ(v′ + U),

τ
(
a(v + U)

)
= τ(av + U) = T (av) = a · T (v) = aτ(v + U).
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This gives us a systematic way of constructing linear transformations on quotient spaces: to get a linear
transformation V/U →W , we just need to start with a linear transformation V →W which is trivial on U
(i.e. has the kernel containing U). The terminology “universal mapping property” refers to any framework
like this: starting with a function T satisfying some certain properties, we can conclude there exists a unique
map τ defined in a certain way in terms of T .

Example 4. At this point, a fair question to ask is “why do I actually need to work with linear transforma-
tions defined on quotient spaces”? Like the question of “why do I actually need to work with quotient spaces”,
it’s hard to give an answer entirely within linear algebra itself: most of the important uses of quotient spaces
come up when you apply linear algebra to other subjects.

So I’ll give an example building off of the Extended Example 1 (of the space L2(I), of “square-integrable
functions [0, 1] → R) in the “quotient vector spaces” handout. In that example, we defined L2(I) to be the
space of integrable functions f : I → R such that

∫ 1

0
|f |2dx < ∞, and then as the quotient of this by the

subspace U of all functions that were “almost everywhere zero”.
To work with this space L2(I) in analysis, we want to be able to integrate functions on it! Say we fix

some function like sin(2πx), and we want to consider the linear functional of “integrating against it”:

f 7→
∫ 1

0

f(x) sin(2πx)dx.

This makes perfect sense for any f in the actual space of functions L2(I), and gives us a linear transformation
L2(I) → R. But what we’d really like is a linear transformation L2(I) → R. Fortunately, the universal
mapping property lets us do this! If f is in the subspace U of “almost everywhere zero” functions, then
f(x) sin(2πx) is also “almost everywhere zero”, so its integral is zero. Thus f 7→

∫ 1

0
f(x) sin(2πx)dx is trivial

on the subspace U , and the Universal Mapping Property tells us that we actually get a homomorphism
L2(I)→ R given by

[f ] = f + U 7→
∫ 1

0

f(x) sin(2πx)dx.

This is the functional that recovers one of the Fourier coefficients of f (which, again, makes sense: we’ve
said that Fourier series only make sense up to “equality almost everywhere”!)

The other isomorphism theorems. From the name “the first isomorphism theorem”, you can probably
guess that there’s a few more “isomorphism theorems” to go along with it. (The universal mapping property
can sometimes be grouped in with them as well). These other isomorphism theorems are a bit less important
to us in this class, but they’re indispensable if you’re going to be seriously working with quotient spaces.

The “second isomorphism theorem” concerns what happens when you have a vector space V and two
subspaces U,W , and you take a quotient (U +W )/W . Your first thought might be that you can “cancel
out the W s” and just be left with something isomorphic to U - this is close to correct, but you need to
compensate for any overlap between U and W .

Theorem 5 (Second isomorphism theorem). Let V be a vector space and U,W ⊆ V two subspaces. Then
there’s an isomorphism of quotient spaces

U

U ∩W
∼=
U +W

W

given by u+ (U ∩W ) 7→ u+W .

The “third isomorphism theorem” is about quotient spaces of quotient spaces, which are pretty unpleasant
to think about if you’re not already really comfortable with quotient spaces.

Theorem 6 (Third isomorphism theorem). Let V be a vector space, W a subspace of V , and U a subspace
of W . Then the quotient space W/U is itself a subspace of the quotient space V/U , and we have a canonical
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isomorphism
V/U

W/U
∼= V/W

by mapping (v + U) +W/U (a coset in V/U by the subspace W/U !) to v +W .

There’s one last theorem usually grouped with these, which is usually called the “correspondence theorem”
or “lattice isomorphism theorem” and tells you about all of the subspaces in a quotient. We take the notation
that Sub(V ) denotes the collection of all subspaces of V .

Theorem 7 (Corresponcence theorem). Let V be a vector space and W a subspace of V . Then there is a
bijective correspondence

Sub(V/W )↔ {U ∈ Sub(V ) :W ⊆ U ⊆ V },

given by taking a subspace U with W ⊆ U ⊆ V to the subspace U/W to V/W . This correspondence preserves
sums and intersections: if we add or intersect two subspaces U1/W and U2/W of V/W we get

U1

W
+
U2

W
=
U1 + U2

W

U1

W
∩ U2

W
=
U1 ∩ U2

W
.

This characterizes Sub(V/W ) in terms of a subset of Sub(V ). Actually, the set Sub(V ) of subspaces
naturally has a partial order (by inclusion), and it’s a lattice with respect to this partial order: any two
subspaces U1, U2 have a join U1 +U2 (a “least upper bound”) and a join U1 ∩U2 (a “greatest lower bound”).
The last part of the theorem tells us that the lattice structure Sub(V/W ) is compatible with the lattice
structure on the sublattice {U :W ⊆ U ⊆ V } of Sub(V ), hence the name “lattice isomorphism theorem”.

I’m omitting the proofs of these theorems in this section; trying to prove them yourself might be a good
way to get in better practice with quotient spaces! (In all of the cases I’ve told you exactly what the function
you need to look at is; what’s left to check is that it’s actually an isomorphism).
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