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4.6 Variation of Parameters

The method of variation of parameters applies to solve

a(x)y′′ + b(x)y′ + c(x)y = f(x).(1)

Continuity of a, b, c and f is assumed, plus a(x) 6= 0. The method is
important because it solves the largest class of equations. Specifically
included are functions f(x) like ln |x|, |x|, ex2

.

Homogeneous Equation. The method of variation of parameters
uses facts about the homogeneous differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0.(2)

The success depends upon writing the general solution of (2) as

y = c1y1(x) + c2y2(x)(3)

where y1, y2 are known functions and c1, c2 are arbitrary constants. If
a, b, c are constants, then the standard recipe for (2) finds y1, y2. It is
known that y1, y2 as reported by the recipe are independent.

Independence. Two solutions y1, y2 of (2) are called independent if
neither is a constant multiple of the other. The term dependent means
not independent, in which case either y1(x) = cy2(x) or y2(x) = cy1(x)
holds for all x, for some constant c. Independence can be tested through
the Wronskian of y1, y2, defined by

W (x) = y1(x)y′2(x) − y′1(x)y2(x).

Theorem 13 (Wronskian and Independence)
The Wronskian of two solutions satisfies a(x)W ′+b(x)W = 0, which implies
Abel’s identity

W (x) = W (x0)e
−

∫

x

x0

(b(t)/a(t))dt
.

Two solutions of (2) are independent if and only if W (x) 6= 0.

The proof appears on page 183.

Theorem 14 (Variation of Parameters Formula)
Let a, b, c, f be continuous near x = x0 and a(x) 6= 0. Let y1, y2 be
two independent solutions of the homogeneous equation ay′′ + by′ + cy = 0
and let W (x) = y1(x)y′2(x) − y′1(x)y2(x). Then the non-homogeneous
differential equation

ay′′ + by′ + cy = f

has a particular solution

yp(x) = y1(x)

(
∫

y2(x)(−f(x))

a(x)W (x)
dx

)

+ y2(x)

(
∫

y1(x)f(x)

a(x)W (x)
dx

)

.(4)
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The proof is delayed to page 183.

History of Variation of Parameters. The solution yp was dis-
covered by varying the constants c1, c2 in the homogeneous solution (3),
assuming they depend on x. This results in formulas c1(x) =

∫

C1F ,

c2(x) =
∫

C2F where F (x) = f(x)/a(x), C1(t) =
−y2(t)

W (t)
,C2(t) =

y1(t)

W (t)
;

see the historical details on page 183. Then

y = y1(x)

∫

C1F + y2(x)

∫

C2F Substitute in (3) for c1, c2.

= −y1(x)

∫

y2
F

W
+ y2(x)

∫

y1
F

W
Use (??) for C1, C2.

=

∫

(y2(x)y1(t) − y1(x)y2(t))
F (t)

W (t)
dt Collect on F/W .

=

∫

y1(t)y2(x) − y1(x)y2(t)

y1(t)y
′

2(t) − y′1(t)y2(t)
F (t)dt Expand W = y1y

′

2 − y′1y2.

Any one of the last three equivalent formulas is called a classical vari-

ation of parameters formula. The fraction in the last integrand is
called Cauchy’s kernel. We prefer the first, equivalent to equation (4),
for ease of use.

18 Example (Independence) Consider y′′ − y = 0. Show the two solutions
sinh(x) and cosh(x) are independent using Wronskians.

Solution: Let W (x) be the Wronskian of sinh(x) and cosh(x). The calculation
below shows W (x) = −1. By Theorem 10, the solutions are independent.

Background. The calculus definitions for hyperbolic functions are sinhx =
(ex − e−x)/2, cosh x = (ex + e−x)/2. Their derivatives are (sinh x)′ = coshx
and (cosh x)′ = sinhx. For instance, (coshx)′ stands for 1

2
(ex + e−x)′, which

evaluates to 1

2
(ex − e−x), or sinhx.

Wronskian detail. Let y1 = sinhx, y2 = coshx. Then

W = y1(x)y′

2(x) − y′

1(x)y2(x) Definition of Wronskian W .

= sinh(x) sinh(x) − cosh(x) cosh(x) Substitute for y1, y′

1
, y2, y′

2
.

= 1

4
(ex − e−x)2 − 1

4
(ex + e−x)2 Apply exponential definitions.

= −1 Expand and cancel terms.

19 Example (Wronskian) Given 2y′′ − xy′ + 3y = 0, verify that a solution
pair y1, y2 has Wronskian W (x) = W (0)ex2/4.

Solution: Let a(x) = 2, b(x) = −x, c(x) = 3. The Wronskian is a solution

of W ′ = −(b/a)W , hence W ′ = xW/2. The solution is W = W (0)ex2/4, by
growth-decay theory.
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20 Example (Variation of Parameters) Solve y′′ + y = sec x by variation of
parameters, verifying y = c1 cos x + c2 sin x + x sin x + cos(x) ln | cos x|.

Solution:
Homogeneous solution yh. The recipe for constant equation y′′ + y = 0
is applied. The characteristic equation r2 + 1 = 0 has roots r = ±i and
yh = c1 cosx + c2 sin x.

Wronskian. Suitable independent solutions are y1 = cosx and y2 = sin x,
taken from the recipe. Then W (x) = cos2 x + sin2 x = 1.

Calculate yp. The variation of parameters formula (4) is applied. The inte-
gration proceeds near x = 0, because sec(x) is continuous near x = 0.

yp(x) = −y1(x)
∫

y2(x) sec(x)dx + y2(x)
∫

y1(x) sec xdx 1

= − cosx
∫

tan(x)dx + sin x
∫

1dx 2

= x sin x + cos(x) ln | cosx| 3

Details: 1 Use equation (4). 2 Substitute y1 = cosx, y2 = sin x. 3 Integral
tables applied. Integration constants set to zero.

21 Example (Two Methods) Solve y′′−y = ex by undetermined coefficients
and by variation of parameters. Explain any differences in the answers.

Solution: The general solution is reported to be y = yh + yp = c1e
x + c2e

−x +
xex/2. Details follow.

Homogeneous solution. The characteristic equation r2−1 = 0 for y′′−y = 0
has roots ±1. The homogeneous solution is yh = c1e

x + c2e
−x.

Undetermined Coefficients Summary. The basic trial solution method
gives initial trial solution y = d1e

x, because the RHS = ex has all derivatives
given by a linear combination of the independent function ex. The fixup rule
applies because the homogeneous solution contains duplicate term c1e

x. The
final trial solution is y = d1xex. Substitution into y′′ − y = ex gives 2d1e

x +
d1xex − d1xex = ex. Cancel ex and equate coefficients of powers of x to find
d1 = 1/2. Then yp = xex/2.

Variation of Parameters Summary. The homogeneous solution yh = c1e
x+

c2e
−x found above implies y1 = ex, y2 = e−x is a suitable independent pair of

solutions. Their Wronskian is W = −2

The variation of parameters formula (11) applies:

yp(x) = ex

∫

−e−x

−2
exdx + e−x

∫

ex

−2
exdx.

Integration, followed by setting all constants of integration to zero, gives yp(x) =
xex/2 − ex/4.

Differences. The two methods give respectively yp = xex/2 and yp(x) =
xex/2− ex/4. The solutions yp = xex/2 and yp(x) = xex/2− ex/4 differ by the
homogeneous solution −xex/4. In both cases, the general solution is

y = c1e
x + c2e

−x +
1

2
xex,
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because terms of the homogeneous solution can be absorbed into the arbitrary
constants c1, c2.

Proof of Theorem 10: The function W (t) given by Abel’s identity is the
unique solution of the growth-decay equation W ′ = −(b(x)/a(x))W ; see page
3. It suffices then to show that W satisfies this differential equation. The
details:

W ′ = (y1y
′

2 − y′

1y2)
′

Definition of Wronskian.

= y1y
′′

2 + y′

1y
′

2 − y′′

1 y2 − y′

1y
′

2 Product rule; y′

1y
′

2 cancels.

= y1(−by′

2
− cy2)/a − (−by′

1
− cy1)y2/a Both y1, y2 satisfy (2).

= −b(y1y
′

2
− y′

1
y2)/a Cancel common cy1y2/a.

= −bW/a Verification completed.

The independence statement will be proved from the contrapositive: W (x) = 0
for all x if and only if y1, y2 are not independent. Technically, independence is
defined relative to the common domain of the graphs of y1, y2 and W . Hence-
forth, for all x means for all x in the common domain.

Let y1, y2 be two solutions of (2), not independent. By re-labelling as necessary,
y1(x) = cy2(x) holds for all x, for some constant c. Differentiation implies
y′

1(x) = cy′

2(x). Then the terms in W (x) cancel, giving W (x) = 0 for all x.

Conversely, let W (x) = 0 for all x. If y1 ≡ 0, then y1(x) = cy2(x) holds for
c = 0 and y1, y2 are not independent. Otherwise, y1(x0) 6= 0 for some x0.
Define c = y2(x0)/y1(x0). Then W (x0) = 0 implies y′

2
(x0) = cy′

1
(x0). Define

y = y2 − cy1. By linearity, y is a solution of (2). Further, y(x0) = y′(x0) = 0.
By uniqueness of initial value problems, y ≡ 0, that is, y2(x) = cy1(x) for all x,
showing y1, y2 are not independent.

Proof of Theorem 11: Let F (t) = f(t)/a(t), C1(x) = −y2(x)/W (x), C2(x) =
y1(x)/W (x). Then yp as given in (4) can be differentiated twice using the
product rule and the fundamental theorem of calculus rule (

∫

g)′ = g. Because
y1C1 + y2C2 = 0 and y′

1
C1 + y′

2
C2 = 1, then yp and its derivatives are given by

yp(x) = y1

∫

C1Fdx + y2

∫

C2Fdx,
y′

p(x) = y′

1

∫

C1Fdx + y′

2

∫

C2Fdx,
y′′

p (x) = y′′

1

∫

C1Fdx + y′′

2

∫

C2Fdx + F (x).

Let F1 = ay′′

1 + by′

1 + cy1, F2 = ay′′

2 + by′

2 + cy2. Then

ay′′

p + by′

p + cyp = F1

∫

C1Fdx + F2

∫

C2Fdx + aF.

Because y1, y2 are solutions of the homogeneous differential equation, then
F1 = F2 = 0. By definition, aF = f . Therefore,

ay′′

p + by′

p + cyp = f.

The proof is complete.

Historical Details. The original variation ideas, attributed to Joseph Louis
Lagrange (1736-1813), involve substitution of y = c1(x)y1(x) + c2(x)y2(x) into
(1) plus imposing an extra condition on the unknowns c1, c2:

c′1y1 + c′2y2 = 0.
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The product rule gives y′ = c′
1
y1 + c1y

′

1
+ c′

2
y2 + c2y

′

2
, which then reduces to

the two-termed expression y′ = c1y
′

1 + c2y
′

2. Substitution into (1) gives

a(c′
1
y′

1
+ c1y

′′

1
+ c′

2
y′

2
+ c2y

′′

2
) + b(c1y

′

1
+ c2y

′

2
) + c(c1y1 + c2y2) = f

which upon collection of terms becomes

c1(ay′′

1 + by′

1 + cy1) + c2(ay′′

2 + by′

2 + cy2) + ay′

1c
′

1 + ay′

2c
′

2 = f.

The first two groups of terms vanish because y1, y2 are solutions of the homo-
geneous equation, leaving just ay′

1
c′
1
+ ay′

2
c′
2

= f . There are now two equations
and two unknowns X = c′1, Y = c′2:

ay′

1
X + ay′

2
Y = f,

y1X + y2Y = 0.

Solving by elimination,

X =
−y2f

aW
, Y =

y1f

aW
.

Then c1 is the integral of X and c2 is the integral of Y , which completes the
historical account of the relations

c1(x) =

∫

−y2(x)f(x)

a(x)W (x)
dx, c2(x) =

∫

y1(x)f(x)

a(x)W (x)
dx.

Exercises 4.6

Independence. Find solutions y1, y2

of the given homogeneous differential
equation which are independent by the
Wronskian test, page 180.

1. y′′ − y = 0

2. y′′ − 4y = 0

3. y′′ + y = 0

4. y′′ + 4y = 0

5. 4y′′ = 0

6. y′′ = 0

7. 4y′′ + y′ = 0

8. y′′ + y′ = 0

9. y′′ + y′ + y = 0

10. y′′ − y′ + y = 0

11. y′′ + 8y′ + 2y = 0

12. y′′ + 16y′ + 4y = 0

13. x2y′′ + y = 0

14. x2y′′ + 4y = 0

15. x2y′′ + 2xy′ + y = 0

16. x2y′′ + 8xy′ + 4y = 0

Wronskian. Compute the Wronskian,
up a constant multiple, without solv-
ing the differential equation.

17. y′′ + y′ − xy = 0

18. y′′ − y′ + xy = 0

19. 2y′′ + y′ + sin(x)y = 0

20. 4y′′ − y′ + cos(x)y = 0

21. x2y′′ + xy′ − y = 0

22. x2y′′ − 2xy′ + y = 0



200

Variation of Parameters. Find the
general solution yh + yp by applying a
variation of parameters formula.

35. y′′ = x2

36. y′′ = x3

37. y′′ + y = sin x

38. y′′ + y = cosx

39. y′′ + y′ = ln |x|

40. y′′ + y′ = − ln |x|

41. y′′ + 2y′ + y = e−x

42. y′′ − 2y′ + y = ex
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7.4 Cauchy-Euler Equation

The differential equation

anx
ny(n) + an−1x

n−1y(n−1) + · · ·+ a0y = 0

is called the Cauchy-Euler differential equation of order n. The sym-
bols ai, i = 0, . . . , n are constants and an 6= 0.

The Cauchy-Euler equation is important in the theory of linear differ-
ential equations because it has direct application to Fourier’s method
in the study of partial differential equations. In particular, the second
order Cauchy-Euler equation

ax2y′′ + bxy′ + cy = 0

accounts for almost all such applications in applied literature.

A second argument for studying the Cauchy-Euler equation is theoret-
ical: it is a single example of a differential equation with non-constant
coefficients that has a known closed-form solution. This fact is due to a
change of variables (x, y) −→ (t, z) given by equations

x = et, z(t) = y(x),

which changes the Cauchy-Euler equation into a constant-coefficient dif-
ferential equation. Since the constant-coefficient equations have closed-
form solutions, so also do the Cauchy-Euler equations.

Theorem 5 (Cauchy-Euler Equation)
The change of variables x = et, z(t) = y(et) transforms the Cauchy-Euler
equation

ax2y′′ + bxy′ + cy = 0

into its equivalent constant-coefficient equation

a
d

dt

(
d

dt
− 1

)
z + b

d

dt
z + cz = 0.

The result is memorized by the general differentiation formula

xky(k)(x) =
d

dt

(
d

dt
− 1

)
· · ·
(
d

dt
− k + 1

)
z(t).(1)

Proof: The equivalence is obtained from the formulas

y(x) = z(t), xy′(x) =
d

dt
z(t), x2y′′(x) =

d

dt

(
d

dt
− 1

)
z(t)

by direct replacement of terms in ax2y′′+ bxy′+ cy = 0. It remains to establish
the general identity (1), from which the replacements arise.
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The method of proof is mathematical induction. The induction step uses the
chain rule of calculus, which says that for y = y(x) and x = x(t),

dy

dx
=

dy

dt

dt

dx
.

The identity (1) reduces to y(x) = z(t) for k = 0. Assume it holds for a certain
integer k; we prove it holds for k + 1, completing the induction.

Let us invoke the induction hypothesis LHS = RHS in (1) to write

d

dt
RHS =

d

dt
LHS Reverse sides.

=
dx

dt

d

dx
LHS Apply the chain rule.

= et
d

dx
LHS Use x = et, dx/dt = et.

= x
d

dx
LHS Use et = x.

= x
(
xky(k)(x)

)′
Expand with ′ = d/dx.

= x
(
kxk−1y(k)(x) + xky(k+1)(x)

)
Apply the product rule.

= k LHS + xk+1y(k+1)(x) Use xky(k)(x) = LHS.

= k RHS + xk+1y(k+1)(x) Use hypothesis LHS = RHS.

Solve the resulting equation for xk+1y(k+1). The result completes the induction.
The details, which prove that (1) holds with k replaced by k + 1:

xk+1y(k+1) =
d

dt
RHS− k RHS

=

(
d

dt
− k

)
RHS

=

(
d

dt
− k

)
d

dt

(
d

dt
− 1

)
· · ·
(

d

dt
− k + 1

)
z(t)

=
d

dt

(
d

dt
− 1

)
· · ·
(

d

dt
− k

)
z(t)

1 Example (How to Solve a Cauchy-Euler Equation) Show the solution details
for the equation

2x2y′′ + 4xy′ + 3y = 0,

verifying general solution

y(x) = c1x
−1/2 cos

(√
5

2
ln |x|

)
+ c2e

−t/2 sin

(√
5

2
ln |x|

)
.

Solution: The characteristic equation 2r(r − 1) + 4r + 3 = 0 can be obtained
as follows:

2x2y′′ + 4xy′ + 3y = 0 Given differential equation.
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2x2r(r − 1)xr−2 + 4xrxr−1 + 3xr = 0 Use Euler’s substitution y = xr.

2r(r − 1) + 4r + 3 = 0 Cancel xr.
Characteristic equation found.

2r2 + 2r + 3 = 0 Standard quadratic equation.

r = − 1
2 ±

√
5
2 i Quadratic formula complex roots.

Cauchy-Euler Substitution. The second step is to use y(x) = z(t) and
x = et to transform the differential equation. By Theorem 5,

2(d/dt)2z + 2(d/dt)z + 3z = 0,

a constant-coefficient equation. Because the roots of the characteristic equation
2r2 + 2r + 3 = 0 are r = −1/2±

√
5i/2, then the Euler solution atoms are

e−t/2 cos

(√
5

2
t

)
, e−t/2 sin

(√
5

2
t

)
.

Back-substitute x = et and t = ln |x| in this equation to obtain two independent
solutions of 2x2y′′ + 4xy′ + 3y = 0:

x−1/2 cos

(√
5

2
ln |x|

)
, e−t/2 sin

(√
5

2
ln |x|

)
.

Substitution Details. Because x = et, the factor e−t/2 is written as (et)−1/2 =
x−1/2. Because t = ln |x|, the trigonometric factors are back-substituted like

this: cos
(√

5
2 t
)

= cos
(√

5
2 ln |x|

)
.

General Solution. The final answer is the set of all linear combinations of
the two preceding independent solutions.

Exercises 7.4

Cauchy-Euler Equation. Find solu-
tions y1, y2 of the given homogeneous
differential equation which are inde-
pendent by the Wronskian test, page
452.

1. x2y′′ + y = 0

2. x2y′′ + 4y = 0

3. x2y′′ + 2xy′ + y = 0

4. x2y′′ + 8xy′ + 4y = 0

Variation of Parameters. Find a so-
lution yp using a variation of parame-
ters formula.

5. x2y′′ = ex

6. x3y′′ = ex

7. y′′ + 9y = sec 3x

8. y′′ + 9y = csc 3x
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