
Examples of sets are to be found everywhere around us. For example, we can speak of the set
of all living human beings, the set of all cities in the US, the set of all sentences of some language,
the set of all prime numbers, and so on. Each living human being is an element of the set of all
living human beings. Similarly, each prime number is an element of the set of all prime numbers,
and so on.

If S is a set and s is an element of S, then we write s ∈ S. If it so happens that s is not an
element of S, then we write s /∈ S. If S is the set whose elements are s, t, and u, then we write
S = {s, t, u}. The left brace and right brace visually indicate the “bounds” of the set, while what
is written within the bounds indicates the elements of the set. For example, if S = {1, 2, 3}, then
2 ∈ S, but 4 /∈ S.

Sets are determined by their elements. The order in which the elements of a given set are listed
does not matter. For example, {1, 2, 3} and {3, 1, 2} are the same set. It also does not matter
whether some elements of a given set are listed more than once. For instance, {1, 2, 2, 2, 3, 3} is still
the set {1, 2, 3}.

Many sets are given a shorthand notation in mathematics because they are used so frequently.
A few elementary examples are the set of natural numbers,

{0, 1, 2, . . . },

denoted by the symbol N, the set of integers,

{. . . ,−2,−1, 0, 1, 2, . . . },

denoted by the symbol Z, the set of rational numbers, denoted by the symbol Q, and the set of
real numbers, denoted by the symbol R.

A set may be defined by a property. For instance, the set of all planets in the solar system, the
set of all even integers, the set of all polynomials with real coefficients, and so on. For a property P
and an element s of a set S, we write P (s) to indicate that s has the property P . Then the notation
A = {s ∈ S : P (s)} indicates that the set A consists of all elements s of S having the property P .
The colon : is commonly read as “such that,” and is also written as “|.” So {s ∈ S |P (s)} is an
alternative notation for {s ∈ S : P (s)}. For a concrete example, consider A = {x ∈ R : x2 = 1}.
Here the property P is “x2 = 1.” Thus, A is the set of all real numbers whose square is one.

Exercise 2.1. In the following sentences, identify the property, and translate the sentence to set
notation.

1. The set of all even integers.

2. The set of all odd prime numbers.

3. The set of all cities with population more than one million people.

Exercise 2.2. Give an alternative description of the sets specified below.

1. {x ∈ R : x2 = 1}.

2. {x ∈ Z : x > −2 and x ≤ 3}.

3. {x ∈ N : x = 2y for some y ∈ N}.
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2.1 Subset relation

For two sets, we may speak of whether or not one set is contained in the other. Here is how
Dedekind defines this relation between sets. Note that Dedekind calls sets systems.

∞∞∞∞∞∞∞∞

A system A is said to be part of a system S when every element of A is also an element of S. Since
this relation between a system A and a system S will occur continually in what follows, we shall express
it briefly by the symbol A ≺ S. [10, p. 46]

∞∞∞∞∞∞∞∞

Modern notation for A ≺ S is A ⊆ S, and we say that A is a subset of S. Thus,

A ⊆ S if, and only if, for all x, if x ∈ A, then x ∈ S.

When A is not a subset of S, we write A 6⊆ S.

Exercise 2.3. Describe what it means for A 6⊆ S that is similar to the description of A ⊆ S given
above.

Dedekind goes on to show that the subset relation satisfies the following properties.

Exercise 2.4.

1. Show that A ⊆ A.

2. Show that if A ⊆ B and B ⊆ C, then A ⊆ C.

The first property is usually referred to as reflexivity and the second as transitivity. Thus, Exer-
cise 2.4 establishes that the subset relation between sets is both reflexive and transitive. Dedekind
also defines what it means for A to be a proper part of S.

∞∞∞∞∞∞∞∞

A system A is said to be a proper part of S, when A is part of S, but...S is not a part of A, i.e.,
there is in S an element which is not an element of A. [10, p. 46]

∞∞∞∞∞∞∞∞

Nowadays we say that A is a proper subset of S, and write A ⊂ S. If A is not a proper subset
of S, then we write A 6⊂ S.

Exercise 2.5.

1. Describe what it means for A to be a proper subset of S.

2. Describe what it means for A not to be a proper subset of S.

3. Show that if A ⊂ S, then A ⊆ S.

4. Does the converse hold? Justify your answer.

5. Show that A 6⊂ A for each set A.

6. Prove that if A ⊂ B and B ⊂ C, then A ⊂ C.
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The fifth property is usually referred to as irreflexivity. Thus, it follows from Exercise 2.5 that
being a proper subset is an irreflexive and transitive relation.

As we have already seen, the subset relation ⊆ is defined by means of the membership relation
∈. However, the two behave quite differently.

Exercise 2.6.

1. Give an example of a set A such that there is a set B with B ∈ A but B 6⊆ A.

2. Give an example of a set A such that there is a set B with B ⊆ A but B /∈ A.

2.2 Set equality

We already discussed the membership and subset relations between sets. But when are two sets
equal? Dedekind addresses this issue as follows.

∞∞∞∞∞∞∞∞

...a system S...is completely determined when with respect to every thing it is determined whether
it is an element of S or not.2 The system S is hence the same as the system T , in symbols S = T ,
when every element of S is also element of T , and every element of T is also element of S. [10, p. 45]

∞∞∞∞∞∞∞∞

Thus, two sets A and B are equal, in notation A = B, when they consist of the same elements;
that is,

A = B if, and only if, for all x, x ∈ A if, and only if, x ∈ B.

Exercise 2.7. Prove that A = B if and only if A ⊆ B and B ⊆ A.

If two sets A and B are not equal, we write A 6= B.

Exercise 2.8. Let P be the property “is a prime number” and O be the property “is an odd
integer.” Consider the sets A = {x ∈ N : P (x)} and B = {x ∈ N : O(x)}.

1. Examine A and B with respect to the subset relation. What can you conclude? Justify your
answer.

2. Are A and B equal? Justify your answer.

Exercise 2.9. Consider the sets

A = {x ∈ Z : x = 2(y − 2) for some y ∈ Z}

and
B = {x ∈ Z : x = 2z for some z ∈ Z}.

Are A and B equal? Justify your answer.

2We give Dedekind’s footnote in full, where he opposes Kronecker’s point of view and sides with Cantor in his
mathematical battles with Kronecker. “In what manner this determination is brought about, and whether we know a way
of deciding upon it, is a matter of indifference for all that follows; the general laws to be developed in no way depend upon
it; they hold under all circumstances. I mention this expressly because Kronecker not long ago (Crelle’s Journal, Vol. 99,
pp. 334–336) has endeavored to impose certain limitations upon the free formation of concepts in mathematics which I do
not believe to be justified; but there seems to be no call to enter upon this matter with more detail until the distinguished
mathematician shall have published his reasons for the necessity or merely the expediency of these limitations.”

5



2.3 Set operations

So far we have studied the membership, subset, and equality relations between sets. But we can also
define operations on sets that are somewhat similar to the operations of addition, multiplication,
and subtraction of numbers that you are familiar with.

The sum of a collection of sets is obtained by combining the elements of the sets. Nowadays we
call this operation union. This is how Dedekind defines it.

∞∞∞∞∞∞∞∞

By the system compounded out of any systems A,B,C, . . . to be denoted M(A,B,C, . . . ) we
mean that system whose elements are determined by the following prescription: a thing is considered as
element of M(A,B,C, . . . ) when and only when it is element of some one of the systems A,B,C, . . . ,
i.e., when it is element of A, or B, or C, . . . [10, pp. 46–47]

∞∞∞∞∞∞∞∞

In the particular case of two sets A and B, the union of A and B is the set consisting of the
elements that belong to either A or B. Modern notation for M(A,B) is A ∪B. Thus,

A ∪B = {x : x ∈ A or x ∈ B}.

Here the meaning of “or” is inclusive; that is, if it so happens that an element x belongs to both A
and B, then x belongs to the union A ∪B.

Another useful operation on sets is taking their common part. Nowadays this operation is
known as intersection. This is how Dedekind defines it.

∞∞∞∞∞∞∞∞

A thing g is said to be common element of the systems A,B,C, . . . , if it is contained in each of
these systems (that is in A and in B and in C . . . ). Likewise a system T is said to be a common part of
A,B,C, . . . when T is part of each of these systems; and by the community of the systems A,B,C, . . .
we understand the perfectly determinate system G(A,B,C, . . . ) which consists of all the common
elements g of A,B,C, . . . and hence is likewise a common part of those systems. [10, pp. 48–49]

∞∞∞∞∞∞∞∞

In the particular case of two sets A and B, the intersection of A and B is the set consisting of
the elements of both A and B. Modern notation for G(A,B) is A ∩B. Thus,

A ∩B = {x : x ∈ A and x ∈ B}.

We may also define the difference of two sets A and B as the set consisting of those elements
of A that do not belong to B. This operation is called set complement and is denoted by −. Thus,

A−B = {x : x ∈ A and x /∈ B}.

The notations for the set operations ∪,∩,−, for the membership relation ∈, and for the subset
relation ⊆ that we use today were first introduced by the famous Italian mathematician Giuseppe
Peano (1858–1932).3

3More on the life and work of Giuseppe Peano can be found in [13, 15, 18]. Also, our webpage
http://www.cs.nmsu.edu/historical-projects/ offers a variety of historical projects, including an historical project
on Peano’s work on natural numbers (see [3]).
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Exercise 2.10. Let A = {2, 3, 5, 7, 11, 13} and B = {A, 2, 11, 18}.

1. Find A ∪B.

2. Find A ∩B.

3. Find A−B.

Usually the sets that we work with are subsets of some ambient set. For instance, even numbers,
odd numbers, and prime numbers are all subsets of the set of integers Z. Such an ambient set is
referred to as a universal set (or a set of discourse) and is denoted by U . In other words, a universal
set is the underlying set that all the sets under examination are subsets of. We may thus speak of
the set difference U −A, which is the set of those elements of U that do not belong to A. The set
difference U −A is usually denoted by Ac. Thus,

Ac = U −A = {x ∈ U : x /∈ A}.

Exercise 2.11. Let A = {x ∈ R : x2 = 2} and B = {x ∈ R : x ≥ 0}.

1. Find A ∩B.

2. Find A ∪B.

3. Find A−B.

4. For U = R, find Ac and Bc.

5. Find N−B.

2.4 Empty set

As we saw in Exercise 2.11, the set operations may yield a set containing no elements.

Exercise 2.12.

1. Let A be any set and let E be a set containing no elements. Prove that E ⊆ A.

2. Conclude that there is a unique set containing no elements.

We call the set containing no elements the empty set (or null set) and denote it by ∅.

Exercise 2.13. Give a definition of the empty set.

Exercise 2.14. Consider the following sets:

1. A = {x ∈ Q : x2 = 2},

2. B = {x ∈ R : x2 + 1 = 0},

3. C = {x ∈ N : x2 + 1 < 1}.

Can you give an alternative description of each of these sets? Justify your answer.
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2.5 Set identities

There are a number of set identities that the set operations of union, intersection, and set difference
satisfy. They are very useful in calculations with sets. Below we give a table of such set identities,
where U is a universal set and A, B, and C are subsets of U .

Commutative Laws: A ∪B = B ∪A A ∩B = B ∩A
Associative Laws: (A ∪B) ∪ C = A ∪ (B ∪ C) (A ∩B) ∩ C = A ∩ (B ∩ C)
Distributive Laws: A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
Idempotent Laws: A ∪A = A A ∩A = A
Absorption Laws: A ∩ (A ∪B) = A A ∪ (A ∩B) = A
Identity Laws: A ∪ ∅ = A A ∩ U = A
Universal Bound Laws: A ∪ U = U A ∩ ∅ = ∅
DeMorgan’s Laws: (A ∪B)c = Ac ∩Bc (A ∩B)c = Ac ∪Bc

Complement Laws: A ∪Ac = U A ∩Ac = ∅
Complements of U and ∅ : U c = ∅ ∅c = U
Double Complement Law: (Ac)c = A
Set Difference Law: A−B = A ∩Bc

Each of these laws asserts that the set on the right-hand side is equal to the set on the left-hand
side. As we now know, this means that the two sets consist of the same elements. For example, to
verify the de Morgan law (A∪B)c = Ac∩Bc, we need to show that for each x, we have x ∈ (A∪B)c

if, and only if, x ∈ Ac ∩ Bc. But x ∈ (A ∪ B)c is equivalent to x /∈ A ∪ B. This is equivalent to
x /∈ A and x /∈ B, which is clearly equivalent to x ∈ Ac and x ∈ Bc. Therefore, x ∈ (A ∪ B)c is
equivalent to x ∈ Ac ∩ Bc. Thus, we have verified that (A ∪ B)c and Ac ∩ Bc consist of the same
elements, which means that (A ∪ B)c = Ac ∩ Bc. Other set identities in the table can be verified
by a similar argument. The next three exercises invite you to verify the remaining set identities
in the table. The laws are grouped in these exercises according to the level of difficulty, from very
simple to more difficult.

Exercise 2.15.

1. Prove the commutative laws.

2. Prove the associative laws.

3. Prove the idempotent laws.

4. Prove the identity laws.

5. Prove the universal bound laws.

Exercise 2.16.

1. Prove the complement laws.

2. Prove the complement of U and ∅ laws.

3. Prove the double complement law.

4. Prove the difference law.
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Exercise 2.17.

1. Prove the absorbtion laws.

2. Prove the second DeMorgan law.

3. Prove the distributive laws.

Exercise 2.18. Prove the following using only set identities:

1. (A ∪B)− C = (A− C) ∪ (B − C).

2. (A ∪B)− (C −A) = A ∪ (B − C).

3. A ∩ (((B ∪ Cc) ∪ (D ∩ Ec)) ∩ ((B ∪Bc) ∩Ac)) = ∅.

2.6 Cartesian products and powersets

Next we introduce two more operations on sets. Both will play an important role in the second part
of the project when we start developing the theory of finite and infinite sets. The first one plays an
important role in defining the concept of function between sets, which is one of the key concepts
in mathematics. The second one is of great importance in building sets of bigger and bigger sizes.

For two sets A and B, we define the Cartesian product of A and B to be the set of all ordered
pairs (a, b), where a ∈ A and b ∈ B. This operation on sets is somewhat similar to the product of
two numbers. We denote the Cartesian product of A and B by A×B. Thus,

A×B = {(a, b) : a ∈ A and b ∈ B}.

Exercise 2.19. Let A = {1, 2, 3} and B = {a, b}.

1. Determine A×B and B ×A.

2. Are A×B and B ×A equal? Justify your answer.

Exercise 2.20.

1. Let A consist of 4 elements and B consist of 5 elements. How many elements are in A× B?
Justify your answer.

2. More generally, let A consist of n elements and B consist of m elements. How many elements
are in A×B? Justify your answer.

Given a set A, we may speak of the set of all subsets of A. This is yet another operation on
sets which, as we will see, is of great importance. We call the set of all subsets of A the powerset
of A and denote it by P (A). Thus,

P (A) = {B : B ⊆ A}.

For example, if A = {1, 2}, then the subsets of A are ∅, {1}, {2}, and A. Therefore, P (A) =
{∅, {1}, {2}, A}.

Exercise 2.21.

1. Determine P (∅).
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Chapter 2

Basic Set Theory

A set is a Many that allows itself to

be thought of as a One.

- Georg Cantor

This chapter introduces set theory, mathematical in-
duction, and formalizes the notion of mathematical
functions. The material is mostly elementary. For
those of you new to abstract mathematics elementary
does not mean simple (though much of the material
is fairly simple). Rather, elementary means that the
material requires very little previous education to un-
derstand it. Elementary material can be quite chal-
lenging and some of the material in this chapter, if
not exactly rocket science, may require that you ad-
just you point of view to understand it. The single
most powerful technique in mathematics is to adjust
your point of view until the problem you are trying
to solve becomes simple.

Another point at which this material may diverge
from your previous experience is that it will require
proof. In standard introductory classes in algebra,
trigonometry, and calculus there is currently very lit-
tle emphasis on the discipline of proof. Proof is, how-
ever, the central tool of mathematics. This text is
for a course that is a students formal introduction to
tools and methods of proof.

2.1 Set Theory

A set is a collection of distinct objects. This means
that {1, 2, 3} is a set but {1, 1, 3} is not because 1
appears twice in the second collection. The second
collection is called a multiset. Sets are often specified
with curly brace notation. The set of even integers

can be written:

{2n : n is an integer}

The opening and closing curly braces denote a set, 2n
specifies the members of the set, the colon says “such
that” or “where” and everything following the colon
are conditions that explain or refine the membership.
All correct mathematics can be spoken in English.
The set definition above is spoken “The set of twice
n where n is an integer”.

The only problem with this definition is that we
do not yet have a formal definition of the integers.
The integers are the set of whole numbers, both pos-
itive and negative: {0,±1,±2,±3, . . .}. We now in-
troduce the operations used to manipulate sets, using
the opportunity to practice curly brace notation.

Definition 2.1 The empty set is a set containing
no objects. It is written as a pair of curly braces with
nothing inside {} or by using the symbol ∅.

As we shall see, the empty set is a handy object.
It is also quite strange. The set of all humans that
weigh at least eight tons, for example, is the empty
set. Sets whose definition contains a contradiction or
impossibility are often empty.

Definition 2.2 The set membership symbol ∈ is
used to say that an object is a member of a set. It
has a partner symbol /∈ which is used to say an object
is not in a set.

Definition 2.3 We say two sets are equal if they
have exactly the same members.
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Example 2.1 If

S = {1, 2, 3}

then 3 ∈ S and 4 /∈ S. The set membership symbol
is often used in defining operations that manipulate
sets. The set

T = {2, 3, 1}
is equal to S because they have the same members: 1,
2, and 3. While we usually list the members of a set
in a “standard” order (if one is available) there is no
requirement to do so and sets are indifferent to the
order in which their members are listed.

Definition 2.4 The cardinality of a set is its size.
For a finite set, the cardinality of a set is the number
of members it contains. In symbolic notation the size
of a set S is written |S|. We will deal with the idea
of the cardinality of an infinite set later.

Example 2.2 Set cardinality

For the set S = {1, 2, 3} we show cardinality by writ-
ing |S| = 3

We now move on to a number of operations on sets.
You are already familiar with several operations on
numbers such as addition, multiplication, and nega-
tion.

Definition 2.5 The intersection of two sets S and
T is the collection of all objects that are in both sets.
It is written S ∩ T . Using curly brace notation

S ∩ T = {x : (x ∈ S) and (x ∈ T )}

The symbol and in the above definition is an ex-
ample of a Boolean or logical operation. It is only
true when both the propositions it joins are also true.
It has a symbolic equivalent ∧. This lets us write the
formal definition of intersection more compactly:

S ∩ T = {x : (x ∈ S) ∧ (x ∈ T )}

Example 2.3 Intersections of sets

Suppose S = {1, 2, 3, 5},
T = {1, 3, 4, 5}, and U = {2, 3, 4, 5}.
Then:

S ∩ T = {1, 3, 5},

S ∩ U = {2, 3, 5}, and

T ∩ U = {3, 4, 5}

Definition 2.6 If A and B are sets and A ∩ B = ∅
then we say that A and B are disjoint, or disjoint
sets.

Definition 2.7 The union of two sets S and T is
the collection of all objects that are in either set. It
is written S ∪ T . Using curly brace notion

S ∪ T = {x : (x ∈ S) or (x ∈ T )}

The symbol or is another Boolean operation, one that
is true if either of the propositions it joins are true.
Its symbolic equivalent is ∨ which lets us re-write the
definition of union as:

S ∪ T = {x : (x ∈ S) ∨ (x ∈ T )}

Example 2.4 Unions of sets.

Suppose S = {1, 2, 3}, T = {1, 3, 5}, and U =
{2, 3, 4, 5}.
Then:

S ∪ T = {1, 2, 3, 5},

S ∪ U = {1, 2, 3, 4, 5}, and

T ∪ U = {1, 2, 3, 4, 5}

When performing set theoretic computations, you
should declare the domain in which you are working.
In set theory this is done by declaring a universal set.

Definition 2.8 The universal set, at least for a
given collection of set theoretic computations, is the
set of all possible objects.

If we declare our universal set to be the integers then
{ 1

2 , 2
3} is not a well defined set because the objects

used to define it are not members of the universal
set. The symbols { 1

2 , 2
3} do define a set if a universal

set that includes 1
2 and 2

3 is chosen. The problem
arises from the fact that neither of these numbers are
integers. The universal set is commonly written U .
Now that we have the idea of declaring a universal
set we can define another operation on sets.
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2.1.1 Venn Diagrams

A Venn diagram is a way of depicting the relationship
between sets. Each set is shown as a circle and circles
overlap if the sets intersect.

Example 2.5 The following are Venn diagrams for
the intersection and union of two sets. The shaded
parts of the diagrams are the intersections and unions
respectively.

A∩B

A∪B

Notice that the rectangle containing the diagram is
labeled with a U representing the universal set.

Definition 2.9 The compliment of a set S is the
collection of objects in the universal set that are not
in S. The compliment is written Sc. In curly brace
notation

Sc = {x : (x ∈ U) ∧ (x /∈ S)}

or more compactly as

Sc = {x : x /∈ S}

however it should be apparent that the compliment of
a set always depends on which universal set is chosen.

There is also a Boolean symbol associated with the
complementation operation: the not operation. The

notation for not is ¬. There is not much savings in
space as the definition of compliment becomes

Sc = {x : ¬(x ∈ S)}

Example 2.6 Set Compliments

(i) Let the universal set be the integers. Then the
compliment of the even integers is the odd inte-
gers.

(ii) Let the universal set be {1, 2, 3, 4, 5}, then the
compliment of S = {1, 2, 3} is Sc = {4, 5} while
the compliment of T = {1, 3, 5} is T c = {2, 4}.

(iii) Let the universal set be the letters {a, e, i, o, u, y}.
Then {y}c = {a, e, i, o, u}.

The Venn diagram for Ac is

Ac

We now have enough set-theory operators to use them
to define more operators quickly. We will continue to
give English and symbolic definitions.

Definition 2.10 The difference of two sets S and
T is the collection of objects in S that are not in T .
The difference is written S − T . In curly brace nota-
tion

S − T = {x : x ∈ (S ∩ (T c))},
or alternately

S − T = {x : (x ∈ S) ∧ (x /∈ T )}

Notice how intersection and complementation can be
used together to create the difference operation and
that the definition can be rephrased to use Boolean
operations. There is a set of rules that reduces the
number of parenthesis required. These are called op-

erator precedence rules.
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(i) Other things being equal, operations are per-
formed left-to-right.

(ii) Operations between parenthesis are done first,
starting with the innermost of nested parenthe-
sis.

(iii) All complimentations are computed next.

(iv) All intersections are done next.

(v) All unions are performed next.

(vi) Tests of set membership and computations,
equality or inequality are performed last.

Special operations like the set difference or the
symmetric difference, defined below, are not included
in the precedence rules and thus always use paren-
thesis.

Example 2.7 Operator precedence

Since complementation is done before intersection
the symbolic definition of the difference of sets can be
rewritten:

S − T = {x : x ∈ S ∩ T c}
If we were to take the set operations

A ∪ B ∩ Cc

and put in the parenthesis we would get

(A ∪ (B ∩ (Cc)))

Definition 2.11 The symmetric difference of
two sets S and T is the set of objects that are in one
and only one of the sets. The symmetric difference is
written S∆T . In curly brace notation:

S∆T = {(S − T ) ∪ (T − S)}

Example 2.8 Symmetric differences

Let S be the set of non-negative multiples of two that
are no more than twenty four. Let T be the non-
negative multiples of three that are no more than
twenty four. Then

S∆T = {2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 21, 22}

Another way to think about this is that we need num-
bers that are positive multiples of 2 or 3 (but not both)
that are no more than 24.

Another important tool for working with sets is the
ability to compare them. We have already defined
what it means for two sets to be equal, and so by
implication what it means for them to be unequal.
We now define another comparator for sets.

Definition 2.12 For two sets S and T we say that
S is a subset of T if each element of S is also an
element of T . In formal notation S ⊆ T if for all
x ∈ S we have x ∈ T .

If S ⊆ T then we also say T contains S which
can be written T ⊇ S. If S ⊆ T and S 6= T then we
write S ⊂ T and we say S is a proper subset of T .

Example 2.9 Subsets

If A = {a, b, c} then A has eight different subsets:

∅ {a} {b} {c}

{a, b} {a, c} {b, c} {a, b, c}

Notice that A ⊆ A and in fact each set is a subset of
itself. The empty set ∅ is a subset of every set.

We are now ready to prove our first proposition.
Some new notation is required and we must intro-
duce an important piece of mathematical culture. If
we say “A if and only if B” then we mean that either
A and B are both true or they are both false in any
given circumstance. For example: “an integer x is
even if and only if it is a multiple of 2”. The phrase
“if and only if” is used to establish logical equiva-
lence. Mathematically, “A if and only if B” is a way
of stating that A and B are simply different ways
of saying the same thing. The phrase “if and only
if” is abbreviated iff and is represented symbolically
as the double arrow ⇔. Proving an iff statement is
done by independently demonstrating that each may
be deduced from the other.

Proposition 2.1 Two sets are equal if and only if
each is a subset of the other. In symbolic notation:

(A = B) ⇔ (A ⊆ B) ∧ (B ⊆ A)

Proof:

Let the two sets in question be A and B. Begin by
assuming that A = B. We know that every set is
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a subset of itself so A ⊆ A. Since A = B we may
substitute into this expression on the left and obtain
B ⊆ A. Similarly we may substitute on the right and
obtain A ⊆ B. We have thus demonstrated that if
A = B then A and B are both subsets of each other,
giving us the first half of the iff.

Assume now that A ⊆ B and B ⊆ A. Then
the definition of subset tells us that any element of
A is an element of B. Similarly any element of B
is an element of A. This means that A and B have
the same elements which satisfies the definition of set
equality. We deduce A = B and we have the second
half of the iff. 2

A note on mathematical grammar: the symbol 2 in-
dicates the end of a proof. On a paper turned in by a
student it is usually taken to mean “I think the proof
ends here”. Any proof should have a 2 to indicate its
end. The student should also note the lack of calcu-
lations in the above proof. If a proof cannot be read
back in (sometimes overly formal) English then it is
probably incorrect. Mathematical symbols should be
used for the sake of brevity or clarity, not to obscure
meaning.

Proposition 2.2 De Morgan’s Laws Suppose
that S and T are sets. DeMorgan’s Laws state that

(i) (S ∪ T )c = Sc ∩ T c, and

(ii) (S ∩ T )c = Sc ∪ T c.

Proof:

Let x ∈ (S ∪ T )c; then x is not a member of S or
T . Since x is not a member of S we see that x ∈
Sc. Similarly x ∈ T c. Since x is a member of both
these sets we see that x ∈ Sc ∩ T c and we see that
(S ∪ T )c ⊆ Sc ∩ T c. Let y ∈ Sc ∩ T c. Then the
definition of intersection tells us that y ∈ Sc and
y ∈ T c. This in turn lets us deduce that y is not a
member of S ∪ T , since it is not in either set, and
so we see that y ∈ (S ∪ T )c. This demonstrates that
Sc ∩ T c ⊆ (S ∪ T )c. Applying Proposition 2.1 we get
that (S ∪ T )c = Sc ∩ T c and we have proven part (i).
The proof of part (ii) is left as an exercise. 2

In order to prove a mathematical statement you must
prove it is always true. In order to disprove a mathe-
matical statement you need only find a single instance

where it is false. It is thus possible for a false mathe-
matical statement to be “true most of the time”. In
the next chapter we will develop the theory of prime
numbers. For now we will assume the reader has a
modest familiarity with the primes. The statement
“Prime numbers are odd” is false once, because 2 is a
prime number. All the other prime numbers are odd.
The statement is a false one. This very strict defini-
tion of what makes a statement true is a convention
in mathematics. We call 2 a counter example. It is
thus necessary to find only one counter-example to
demonstrate a statement is (mathematically) false.

Example 2.10 Disproof by counter example

Prove that the statement A ∪ B = A ∩ B is false.

Let A = {1, 2} and B = {3, 4}. Then A ∩ B = ∅
while A ∪ B = {1, 2, 3, 4}. The sets A and B form a
counter-example to the statement.

Problems

Problem 2.1 Which of the following are sets? As-
sume that a proper universal set has been chosen and
answer by listing the names of the collections of ob-
jects that are sets. Warning: at least one of these
items has an answer that, while likely, is not 100%
certain.

(i) A = {2, 3, 5, 7, 11, 13, 19}

(ii) B = {A, E, I, O, U}

(iii) C = {√x : x < 0}

(iv) D = {1, 2, A, 5, B, Q, 1, V }

(v) E is the list of first names of people in the 1972
phone book in Lawrence Kansas in the order
they appear in the book. There were more than
35,000 people in Lawrence that year.

(vi) F is a list of the weight, to the nearest kilogram,
of all people that were in Canada at any time in
2007.

(vii) G is a list of all weights, to the nearest kilogram,
that at least one person in Canada had in 2007.
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Problem 2.2 Suppose that we have the set U =
{n : 0 ≤ n < 100} of whole numbers as our
universal set. Let P be the prime numbers in U ,
let E be the even numbers in U , and let F =
{1, 2, 3, 5, 8, 13, 21, 34, 55, 89}. Describe the following
sets either by listing them or with a careful English
sentence.

(i) Ec,

(ii) P ∩ F ,

(iii) P ∩ E,

(iv) F ∩ E ∪ F ∩ Ec, and

(v) F ∪ F c.

Problem 2.3 Suppose that we take the universal set
U to be the integers. Let S be the even integers, let
T be the integers that can be obtained by tripling any
one integer and adding one to it, and let V be the set
of numbers that are whole multiples of both two and
three.

(i) Write S, T , and V using symbolic notation.

(ii) Compute S ∩ T , S ∩ V and T ∩ V and give sym-
bolic representations that do not use the symbols
S, T , or V on the right hand side of the equals
sign.

Problem 2.4 Compute the cardinality of the follow-
ing sets. You may use other texts or the internet.

(i) Two digit positive odd integers.

(ii) Elements present in a sucrose molecule.

(iii) Isotopes of hydrogen that are not radioactive.

(iv) Planets orbiting the same star as the planet you
are standing on that have moons. Assume that
Pluto is a minor planet.

(v) Elements with seven electrons in their valence
shell. Remember that Ununoctium was discov-
ered in 2002 so be sure to use a relatively recent
reference.

(vi) Subsets of S = {a, b, c, d} with cardinality 2.

(vii) Prime numbers whose base-ten digits sum to ten.
Be careful, some have three digits.

Problem 2.5 Find an example of an infinite set that
has a finite complement, be sure to state the universal
set.

Problem 2.6 Find an example of an infinite set that
has an infinite complement, be sure to state the uni-
versal set.

Problem 2.7 Add parenthesis to each of the follow-
ing expressions that enforce the operator precedence
rules as in Example 2.7. Notice that the first three de-
scribe sets while the last returns a logical value (true
of false).

(i) A ∪ B ∪ C ∪ D

(ii) A ∪ B ∩ C ∪ D

(iii) Ac ∩ Bc ∪ C

(iv) A ∪ B = A ∩ C

Problem 2.8 Give the Venn diagrams for the fol-
lowing sets.

(i) A − B (ii) B − A (iii) Ac ∩ B

(iv) A∆B (v) (A∆B)c (vi) Ac ∪ Bc

U

A B

C

7

3

65

4

1 2

0

Problem 2.9 Examine the Venn diagram above.
Notice that every combination of sets has a unique
number in common. Construct a similar collection
of four sets.

Problem 2.10 Read Problem 2.9. Can a system of
sets of this sort be constructed for any number of sets?
Explain your reasoning.



9.5 Equivalence Relations

You know from your early study of fractions that each fraction has many equivalent forms. For example,

1

2
,

2

4
,

3

6
,
−1

−2
,
−3

−6
,

15

30
, . . .

are all different ways to represent the same number. They may look different; they may be called different
names; but they are all equal. The idea of grouping together things that “look different but are really the
same” is the central idea of equivalence relations.

A partition of a set S is a finite or infinite collection of nonempty, mutually disjoint subsets whose union
is S.

Definition 1. A partition of a set S is a collection of disjoint nonempty subsets of S that have S as their
union. In other words, the collection of subsets Ai, i ∈ I (where I is an index set) forms a partition of S if
and only if

(i) Ai 6= ∅ for i ∈ I,

(ii) Ai ∩Aj = ∅ when i 6= j, and

(iii) ⋃
i∈I

Ai = S.

(Here the notation
⋃

i∈I represents the union of the sets Ai for all i ∈ I.)

Definition 2. A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and
transitive.

Recall:

1. R is reflexive if, and only if, ∀x ∈ A, xRx.

2. R is symmetric if, and only if, ∀x, y ∈ A, if xR y then y Rx.

3. R is transitive if, and only if, ∀x, y, z ∈ A, if xR y and y R z then xR z.

Definition 3. Two elements a and b that are related by an equivalence relation are called equivalent. The
notation a ∼ b is often used to denote that a and b are equivalent elements with respect to a particular
equivalence relation.

Example 1. Are these equivalence relations on {0, 1, 2}?

(a) {(0, 0), (1, 1), (0, 1), (1, 0)}

(b) {(0, 0), (1, 1), (2, 2), (0, 1), (1, 2)}

(c) {(0, 0), (1, 1), (2, 2), (0, 1), (1, 2), (1, 0), (2, 1)}

(d) {(0, 0), (1, 1), (2, 2), (0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)}

(e) {(0, 0), (1, 1), (2, 2)}

Solution. (a) R is not reflexive: (2, 2) /∈ R. Thus, by definition, R is not an equivalence relation.

(b) R is not symmetric: (1, 2) ∈ R but (2, 1) /∈ R. Thus R is not an equivalence relation.

(c) R is not transitive: (0, 1), (1, 2) ∈ R, but (0, 2) /∈ R. Thus R is not an equivalence relation.

(d) R is reflexive, symmetric, and transitive. Thus R is an equivalence relation.

1



(e) R is reflexive, symmetric, and transitive. Thus R is an equivalence relation.

Example 2. Which of these relations on the set of all functions on Z→ Z are equivalence relations?

(a) R = {(f, g) | f(1) = g(1)}.

(b) R = {(f, g) | f(0) = g(0) or f(1) = g(1)}.

Solution. (a) f(1) = f(1), so R is reflexive. If f(1) = g(1), then g(1) = f(1), so R is symmetric. If
f(1) = g(1) and g(1) = h(1), then f(1) = h(1), so R is transitive. R is reflexive, symmetric, and
transitive, thus R is an equivalence relation.

(b) f(1) = f(1), so R is reflexive. If f(1) = g(1) or f(0) = g(0), then g(1) = f(1) or g(0) = f(0), so R is
symmetric. However, R is not transitive: if f(0) = g(0) and g(1) = h(1), it does not necessarily follow
that f(1) = h(1) or that f(0) = h(0). Thus R is not an equivalence relation.

Example 3. Let R be the relation on Z× Z such that

((a, b), (c, d)) ∈ R⇔ a + d = b + c.

Show that R is an equivalence relation.

Solution. R is reflexive: Suppose (a, b) is an ordered pair in Z× Z. [We must show that (a, b)R (a, b).] We
have a + b = a + b. Thus, by definition of R, (a, b)R (a, b).

R is symmetric: Suppose (a, b) and (c, d) are two ordered pairs in Z × Z and (a, b)R (c, d). [We must
show that (c, d)R (a, b).] Since (a, b)R (c, d), a + d = b + c. But this implies that b + c = a + d, and so, by
definition of R, (c, d)R (a, b).

R is transitive: Suppose (a, b), (c, d), and (e, f) are elements of Z × Z, (a, b)R (c, d), and (c, d)R (e, f).
[We must show that (a, b)R (e, f).] Since (a, b)R (c, d), a + d = b + c, which means a− b = c− d, and since
(c, d)R (e, f)C, c + f = d + e, which means c− d = e− f . Thus a− b = e− f , which means a + f = b + e,
and so, by definition of R, (a, b)R (e, f).

Definition 4. Suppose A is a set and R is an equivalence relation on A. For each element a in A, the
equivalence class of a, denoted [a] and called the class of a for short, is the set of all elements x in A such
that x is related to a by R.

In symbols,
[a] = {x ∈ A | xRa}.

The procedural version of this definition is

∀x ∈ A, x ∈ [a]⇔ xRa.

When several equivalence relations on a set are under discussion, the notation [a]R is often used to denote
the equivalence class of a under R.

Theorem 1. Let R be an equivalence relation on a set A. Let a, b ∈ A. The following are equivalent
(TFAE):

(i) aR b

(ii) [a] = [b]

(iii) [a] ∩ [b] 6= ∅.
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Proof. [(i)⇒ (ii)]: Assume that aR b. We will prove that [a] = [b] by showing [a] ⊆ [b] and [b] ⊆ [a]. Suppose
c ∈ [a]. Then aR c. Because aR b and R is symmetric, we know that bR a. Furthermore, because R is
transitive and bR a and aR c, it follows that bR c. Hence, c ∈ [b]. This shows that [a] ⊆ [b]. The proof that
[b] ⊆ [a] is similar.

[(ii) ⇒ (iii)]: Assume that [a] = [b]. It follows that [a] ∩ [b] 6= ∅ because [a] is nonempty (because a ∈ [a]
because R is reflexive).

[(iii) ⇒ (i)]: Suppose that [a] ∩ [b] 6= ∅. Then there is an element c with c ∈ [a] and c ∈ [b]. In other
words, aR c and bR c. By the symmetric property, cR b. Then by transitivity, because aR c and cR b, we
have aR b.

Because (i) implies (ii), (ii) implies (iii), and (iii) implies (i), the three statements, (i), (ii), and (iii), are
equivalent.

Corollary. If A is a set, R is an equivalence relation on A, and a and b are elements of A, then

either [a] ∩ [b] = ∅ or [a] = [b].

That is, any two equivalence classes of an equivalence relation are either mutually disjoint or identical.

Theorem 2. Let R be an equivalence relation on a set A. Then the equivalence classes of R form a partition
of A. Conversely, given a partition {Ai | i ∈ I} of the set A, there is an equivalence relation R that has the
sets Ai, i ∈ I, as its equivalence classes.

The proof of Theorem 2 is divided into two parts: first, a proof that A is the union of the equivalence
classes of R and second, a proof that the intersection of any two distinct equivalence classes is empty. The
proof of the first part follows from the fact that the relation is reflexive. The proof of the second part follows
from the corollary above.

Proof. Suppose A is a set and R is an equivalence relation on A. For notational simplicity, we assume that
R has only a finite number of distinct equivalence classes, which we denote

A1, A2, . . . , An,

where n is a positive integer. (When the number of classes is infinite, the proof is identical except for
notation.)

(A = A1 ∪A2 ∪ · · · ∪An): [We must show that A ⊆ A1 ∪A2 ∪ · · · ∪An and A1 ∪A2 ∪ · · · ∪An ⊆ A.]
To show that A ⊆ A1 ∪ A2 ∪ · · · ∪ An, suppose x is an arbitrary element of A. [We must show that

x ∈ A1 ∪A2 ∪ · · · ∪An.] By reflexivity of R, xRx. But this implies that x ∈ [x] by definition of class. Since
x is in some equivalence class, it must be in one of the distinct equivalence classes A1, A2, . . . , or An. Thus
x ∈ Ai for some index i, and hence x ∈ A1 ∪A2 ∪ · · · ∪An by definition of union [as was to be shown].

To show that A1 ∪ A2 ∪ · · · ∪ An ⊆ A, suppose x ∈ A1 ∪ A2 ∪ · · · ∪ An. [We must show that x ∈ A.]
Then x ∈ Ai for some i = 1, 2, . . . , n, by definition of union. But each Ai is an equivalence class of R. And
equivalence classes are subsets of A. Hence Ai ⊆ A and so x ∈ A [as was to be shown].

Since A ⊆ A1 ∪ A2 ∪ · · · ∪ An and A1 ∪ A2 ∪ · · · ∪ An ⊆ A, then by definition of set equality, A =
A1 ∪A2 ∪ · · · ∪An.

(The distinct classes of R are mutually disjoint): Suppose that Ai and Aj are any two distinct equivalence
classes of R. [We must show that Ai and Aj are disjoint.] Since Ai and Aj are distinct, then Ai 6= Aj . And
since Ai and Aj are equivalence classes of R, there must exist elements a and b in A such that Ai = [a] and
Aj = [b]. By the corollary to theorem 1,

either [a] ∩ [b] = ∅ or [a] = [b].

But [a] 6= [b] because Ai 6= Aj . Hence [a] ∩ [b] = ∅. Thus Ai ∩Aj = ∅, and so Ai and Aj are disjoint [as was
to be shown].
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There are m different congruence classes modulo m, corresponding to the m different remainders possible
when an integer is divided by m. The m congruence classes are also denoted by [0]m, [1]m, . . . , [m − 1]m.
They form a partition of the set of integers.

[a]m = {x ∈ Z | x ≡ a (mod m)}.

Example 4. What is equivalence class of 1, 2 for congruence modulo 5? Let R = {(a, b) | a ≡ b (mod 5)}.

Solution. For each integer a,

[a] = {x ∈ Z | xRa}
= {x ∈ Z | 5 | (x− a)}
= {x ∈ Z | x− a = 5k, for some integer k}.

Therefore,
[a] = {x ∈ Z | x = 5k + a, for some integer k}.

In particular,

[1] = {x ∈ Z | x = 5k + 1, for some integer k}
= {. . . ,−14,−9,−4, 1, 6, 11, 16, 21, . . .}

and

[2] = {x ∈ Z | x = 5k + 2, for some integer k}
= {. . . ,−13,−8,−3, 2, 7, 12, 17, 22, . . .}.

Example 5. How many distinct equivalence classes are there modulo 5?

Solution. There are five distinct equivalence classes, modulo 5: [0], [1], [2], [3], and [4].

The last examples above illustrate a very important property of equivalence classes, namely that an
equivalence class may have many different names. In the above example, for instance, the class of 0, [0], may
also be called the class of 5, [5], or the class of −10, [−10]. But what the class is, is the set

{x ∈ Z | x = 5k, for some integers k}.

Definition 5. Suppose R is an equivalence relation on a set A and S is an equivalence class of R. A
representative of the class S is any element a such that [a] = S.

If a is any element of an equivalence class S, then S = [a]. Hence every element of an equivalence class
is a representative of that class.

Example 6. Let A be the set of all ordered pairs of integers for which the second element of the pair is
nonzero. Symbolically,

A = Z× (Z− {0}).

Define a relation R on A as follows: ∀(a, b), (c, d) ∈ A,

(a, b)R (c, d)⇔ ad = bc.

The fact is that R is an equivalence relation. Describe the distinct equivalence classes of R.
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Solution. There is one equivalence class for each distinct rational number. Each equivalence class consists
of all ordered pairs (a, b) that, if written as fractions a

b , would equal each other. The reason for this is that
the condition for two rational numbers to be equal is the same as the condition for two ordered pairs to be
related. For instance, the class of (1, 2) is

[(1, 2)] = {(1, 2), (−1,−2), (2, 4), (−2,−4), (3, 6), (−3,−6), . . .}

because
1

2
=
−1

−2
=

2

4
=
−2

−4
=

3

6
=
−3

−6
= · · · .

It is possible to expand this result to define operations of addition and multiplication on the equivalence
classes of R that satisfy all the same properties as the addition and multiplication of rational numbers. It
follows that the rational numbers can be defined as equivalence classes of ordered pairs of integers.
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