Laplace's Equation

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$

In the vector calculus course, this appears as $\nabla^2 \phi = 0$ where $\nabla = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix}$

Note that the equation has **no** dependence on time, just on the spatial variables x,y. This means that Laplace's Equation describes **steady state** situations such as:

- steady state temperature distributions
- steady state stress distributions
- steady state potential distributions (it is also called the potential equation
- steady state flows, for example in a cylinder, around a corner, ...

Stress analysis example: Dirichlet conditions

Steady state stress analysis problem, which satisfies Laplace's equation; that is, a stretched elastic membrane on a rectangular former that has prescribed out-of-plane displacements along the boundaries

w = 0

w(x,y) is the displacement in z-direction

To solve:

$$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = 0$$

Boundary conditions

$$w(0,y)=0,$$

for
$$0 \le y \le b$$

$$w(x,0) = 0, \qquad \text{for } 0 \le x \le a$$

for
$$0 \le x \le a$$

$$w(a, y) = 0,$$

$$w(a, y) = 0, \qquad \text{for } 0 \le y \le b$$

$$w(x,b) = w_0 \sin \frac{\pi}{a} x$$
, for $0 \le x \le a$

Solution by separation of variables

$$w(x,y) = X(x)Y(y)$$
 from which
$$X''Y + XY'' = 0$$
 and so
$$\frac{X''}{X} + \frac{Y''}{Y} = 0$$
 as usual ...
$$\frac{X''}{X} = -\frac{Y''}{Y} = k$$

where k is a constant that is either equal to, >, or < 0.

Case k=0

$$X(x) = (Ax + B), Y(y) = (Cy + D)$$

$$w(0, y) = 0 \Rightarrow B = 0 \text{ or } C = D = 0$$

if $C = D = 0$, then $Y(y) \equiv 0$, so $w(x, y) \equiv 0$
Continue with $B = 0$: $w(x, y) = Ax(Cy + D)$

$$w(x,0) = 0 \Rightarrow ADx = 0$$

Either $A = 0$ (so $w = 0$) or $D = 0$
Continue with $w(x, y) = ACxy$

$$w(a, y) = 0 \Rightarrow ACay = 0 \Rightarrow A = 0 \text{ or } C = 0 \Rightarrow w(x, y) \equiv 0$$

That is, the case k=0 is not possible

Case k>0

Suppose that $k = \alpha^2$, so that

$$w(x, y) = (A \cosh \alpha x + B \sinh \alpha x)(C \cos \alpha y + D \sin \alpha y)$$

Recall that $\cosh 0 = 1$, $\sinh 0 = 0$

$$w(0, y) = 0 \Rightarrow A(C\cos\alpha y + D\sin\alpha y) = 0$$

$$C = D = 0 \Rightarrow w(x, y) \equiv 0$$

Continue with $A = 0 \Rightarrow w(x, y) = B \sinh \alpha x (C \cos \alpha y + D \sin \alpha y)$

$$w(x,0) = 0 \Rightarrow BC \sinh \alpha x = 0$$

$$B = 0 \Rightarrow w(x, y) \equiv 0$$

Continue with $C = 0 \Rightarrow w(x, y) = BD \sinh \alpha x \sin \alpha y$

$$w(a, y) = 0 \Rightarrow BD \sinh \alpha a \sin \alpha y = 0$$

so either
$$B = 0$$
 or $D = 0 \Rightarrow w(x, y) \equiv 0$

Again, we find that the case k>0 is not possible

Final case *k*<0

Suppose that $k = -\alpha^2$

$$w(x, y) = (A\cos\alpha x + B\sin\alpha x)(C\cosh\alpha y + D\sinh\alpha y)$$

$$w(0, y) = 0 \Rightarrow A(C \cosh \alpha y + D \sinh \alpha y) = 0$$

as usual, $C = D = 0 \Rightarrow w \equiv 0$
continue with $A = 0 \Rightarrow w(x, y) = B \sin \alpha x (C \cosh \alpha y + D \sinh \alpha y)$

$$w(x,0) = 0 \Rightarrow BC \sin \alpha x = 0$$

 $B = 0 \Rightarrow w \equiv 0$
continue with $C = 0 \Rightarrow w(x, y) = BD \sin \alpha x \sinh \alpha y$

$$w(a, y) = 0 \Rightarrow BD \sin \alpha a \sinh \alpha y = 0$$

 $B = 0 \text{ or } D = 0 \Rightarrow w \equiv 0$
 $\sin \alpha a = 0 \Rightarrow \alpha = n \frac{\pi}{a} \Rightarrow w_n(x, y) = BD \sin n \frac{\pi}{a} x \sinh n \frac{\pi}{a} y$

Solution

Applying the first three boundary conditions, we have

$$w(x,y) = \sum_{n=1}^{\infty} K_n \sin \frac{n\pi x}{a} \sinh \frac{n\pi y}{a}$$

The final boundary condition is: $w(x,b) = w_0 \sin \frac{\pi x}{a}$

which gives: $w_0 \sin \frac{\pi x}{a} = \sum_{n=1}^{\infty} K_n \sin \frac{n \pi x}{a} \sinh \frac{n \pi b}{a}$

We can see from this that n must take only one value, namely 1, so that $K_1 = \frac{w_0}{\sinh \frac{\pi b}{a}}$

and the final solution to the stress distribution is

$$w(x,y) = \frac{w_0}{\sinh \frac{\pi b}{a}} \sin \frac{\pi x}{a} \sinh \frac{\pi y}{a}$$

More general boundary condition

Then

$$w_0 f(x) = \sum_{n=1}^{\infty} K_n \sin \frac{n\pi x}{a} \sinh \frac{n\pi b}{a}$$

and as usual we use orthogonality formulae/HLT to find the $K_{\rm n}$

Types of boundary condition

- 1. The value $\phi(x,y)$ is specified at each point on the boundary: "Dirichlet conditions"
- 2. The *derivative normal to the boundary* $\frac{\partial \phi}{\partial \mathbf{n}}(x,y)$ is specified at each point of the boundary: "Neumann conditions"
- 3. A mixture of type 1 and 2 conditions is specified

Johann Dirichlet (1805-1859)

http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Dirichlet.html

Carl Gottfried Neumann (1832 -1925)

http://www-history.mcs.st-

andrews.ac.uk/history/Mathematicians/Neumann_Carl.html

