3 Coulomb’s LaW

> 1. . < the force of attraction (unlike charges) -
g Law gives int charges Cpy).
Coulomb Zen fwo point charges. TWOthI;Olline 'oinﬁl til; and 7, separ]s‘“h "
charges) betwrt on each other forces along rt'J ) tg °M Which ; bt g !
distance 7 €X€ £ the charges and inversely proportional to the Separaﬁon s Oponiubf
(o the product 0 i q; 92 1 g9, : quafed \
F=k—"= 2 |
Thu s, 7'2 47580 ¥

The constant €, is called permittivity of free space.

' charges are situated in some ,

If instead of free space (air), the charg medmm’ .

between them can be written as | B
1 41 (] 2 1 ql qz '

med — Ame 1"2 47580]{ 7‘2 ?

where, € =€,k =permittivity of the mediurp. .
Here, k is the relative permittivity or dielectric constant of the mediyp,

I g9,
Fug 4180k 2 1 F,
Faz’r 1 q, qs k F'med
47580 ]"2

Thus, dielectric constant,
force between two charges in air

force between same charges at same separation in that medium

We can write the Coulomb’s law in vector form as follows :

4

S Scanned with CamScanner




Field and Potentials ) 3

ryp 18 the unit Vector frq
m

In a simila 2109, and ry, ={7, -7
T 'way, the force On ch | 1 =ir; = r|is the distance from ¢, to g
Charge . T
8¢ g, due to ¢, is given b
B 2 1 Is given by

F

h = ; 9 9> 4 1'5
| e, g2 2T TTn
Thus the force o One o
second due to the firgt
Important points . (a
If the charges are mgqy;

electrostatic field.

Charge d
ue ¢ :
0 second is equal and opposite to the force on

) The

Cha[' eq

g, they \iiﬁ ln.the Coulomb’s law are assumed to be sztic.
give rise to magnetic field in addition w

(b) The charges must

: , point ch : :
be specified uniquely, arge, otherwise the distance between them cannot

> 1.4 Principle of Superposition

V al point charee
a
T8Es are present, the total force on a particular charge g is

= l

the vector sum of the indivi )
8 S

forces have Ir_ld_W1dual forces due to each of the other charges. Thus, electric
a Supel’pOSItlon pl‘operty ges. 1us, Cloiulin

-

According t i

g to the princi f s

iber of offar dha : ! ple of superposition, the force on any charge dus 1 2
m ges 1s equal to the vector sum of all the forces on that charge cus

’ i ‘i - Tesen |
‘ . l ' ges 1S IlIlaff€C L

Thus for a sy 2
system of n charges g,, ¢, ..., q,,, the total force F; on charge ¢ due 1o

all other charges is given by

]

NE

F 52Fp +Pg ot P =

F,. =
) Li

In the Summation i =1 is omitted, because a charge can not exert force on itself.

» 1.5 Electric Field

A charged particle at rest produces electric . r
field. But if the charged particle is in uniform

(unaccelerated) motion, it produces both
and magnetic fields. An accelerated g (+

ricle not only produces an electric
fields, but also radiates energy in s

!

mj

v

electric
charged pa
and magnetic
the form of electromagnetic waves.

The electric field intensity (or electric field strengt

when placed in the electric field.

E=li Fe
icallv = lim —
Mathematically. 0 4o

A ml

—2

h) E is the force per unit charge
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4 <) Electricity, Electrostatics and Magnetisy,

lere, limit g <5 0 b taken (o ensure that the tegy Chargg i, 50 Kmy)) at
Here, limir ¢ o = Ol ‘ F HOUICE Clogtyic g - thag
" dlectric field and disturb the s tric fielg M thy "o
produce ity own electric & ey, 0
{’Fthe foge, N,

S dy

; ity 7 iss obvious) in fhcdimct‘,
dircetion of electrie ficld intensity I is obviously lon

s/meter. 1 ¢ 15 positiye o
expressed in newlons/conlomb or volts/meter 15 ] » B §

4. 0n the other hand i Fais negative, then /: i directed lowards q.

i R . . » 1 ’ )' ]l [
The electrie field mtcnsity al point 7 due to a pomt ¢h

arge O locape atz .
by

N Qo (F =0 " f__ﬁj\')
b= .Cl;; qy 4ne,, [F ‘}:’13 ame,, IF“‘;'IJ

For N point charges Q,,Qz,...,QN located at iy e

intensity at point 7 iy readily obtaine g g
F=2 C-5) g, =0}, IG5,
‘ -—47“30 = dme, P =g dne, m
N -~
2\1\ ) 0, (r.\,;)
k
> 1.6 Lines of Force

Electric ficld jg ofte
continuoyg directe lin
tangent showsg the

N visualize by drawing some im
¢S drawnp 50 that at
directiop of'the fie]q Line

aginary field lingg Whigh e
any point on 5 line the gip..

Irectiop of the
- Lines of foree have the following Properj,
L. They are imaginary lines or CUIVes so that (he a
langent »¢ any point on the curve gives the direction of
the field 4 that point,
2. They start from positive charge ang lerminate oy
negative charge, There IS repulsion between the lineg, =
3. Two lineg of force o ot Intergecy With each %
other, becauge '

. M a clogeqd loop. Since formation of 5 closed loop
woul Imply thay S0me point of the line would simullaneously be
well ag negatjye Charge
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u-ostaﬁcs ditd IneEglitusin
lec

grectricity: re of Electric Fielg
6 tive Natu o
've Felectric IIEI 7 .
conserva ative nature of electr d by Showmg N
> 1.7  the conservaty charge g at a distance 7 j giv ay,

Wecan shov i due 10 9 Po]ﬂf Clldiz . & by, ‘E‘Qq

ic 1€ - == -

Jio "Iecm.’ - .’] R 3 r
Thee E:I.:;::_’ 47E o7
4G Q)

r R O S ST
- R i — o (V)(r l
f\(‘g;?‘?——rx[r;) 4neg L“ iy
7 =3

;?)x;}

_0+(-3r7 FxF)=0 [since ﬁXP\

O'r
e - Alternatively, , Py
ot £ is conservative in nature. Altern B, v - e
This shows that £ 18 Shn‘w %‘
" E. ,‘.r"..?:(l .
~ 18 FElactrostatic Potent:a-l )
 sie P ' rite £=-VV. Here V is 4 Scalar g,
Nince cF =0, we can W )
Since VXE e nl caﬁﬁ
slectrostatic potential. i . ) |
e Eedr==VV.dr =— g1

Hence. ['(F):—JE-[F‘

Since £ is the electric force on unit charge. we define the Potentia] , e
: ( srtey - ar ¢ L
fans in bringi test (positive) charge against
the work done in bringing a HalL- ke Thp ) ‘7‘ G- 48 the electy,
from infinity to that point. We have taken the potentia

Fa
L

. Stati
I at lnﬁlli[‘y U

refer, ;
( eNce mml

equal to zero. N |
For a point charge ¢ located at the onigin, the potentia] a¢ a distanee ,» o
charge is given by ;
o f = -, g : q ’ g
I’(}- ):—j E(r )(j]_‘. :—-J -——-—._:Td}. =1
. - ANEF*

dne ,r
Ifthe point charge is Jocated at the position 7y, the field a

£ s given by,
F(I-:' ) = q

-_'—__—'—-—__.

dne, Ir’ -5
> 1.9 Equipotentia] Surfaces

Surface ¢

q D which electric potentig]
Slriace. For

- ; has a constant value is called equipotit
Mavity, eqy Menti B = . ook ared
the sape e qu 1{30 cnual surface i the locus of aJj those points “hu:harff 1
e h; Om the surface Fora Point charge 0 all points on a spherical
. ‘i“t( a OUI 7 - s St —_—
Potentin} 5 4 oo € potentia] Since £ points in a direction along “b][;;
LA N T -~ . ¢
“quipotentia) g, £ js “0mmal 1o the . uipotential surface. Some of
el tial Surface (closed ¢ 5) & Juip i
elow Nours)

i

howt
B s . rg 5h0
Or different charge configuration 3

B C il o
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((((' .U))) ((fc ’U}

Faefed 1oy,

(1) Point chagpe
(’/I Ve napass v
.r 1 ffﬂ'i‘

i

‘ u,_/"ff ‘

(d) /s {mmf charge in
front of 3 chzryed
plane

(¢) A dipole

e "o LT
IDeT Yo

~ 1.10 Continuous Charge Distribution

1( o 2 y . X — ,
So far, we have considered only point charge, which essenti ially oo
ydered ":4 lprge

small physical space. In practical application, the charges encount
number of clectronic charges. Hence the charges may be considersd continuss w0 %0
cribe 2 large nusmber

wa A

macroscopic level. The use of a continuous charge density to des
density 1o descrive 27,

!"";
’JJ-¢' - »"—'

of discrete charges is similar to the use of a continuous mass d
which actually consists of a large number of discrete molecules. It is pos
e 25 illustrzto

continuous charge distribution along a line, on 4 a surface, or in 2 volume 2%

\h \“

v

in the Figure.
Line charge : If dg be the small charge in an element
r

of line d/, then the charge per unit length, defined as the

line (linear) charge density, and is given by
_4q dg =1l
dl
0=[nd

Thus the total charge in the line 1s,

Surface charge : If dg be the charge in a small surface element ds,
e the surface charge density as

then we defin
di
G - .._g-

ds

Total charge in the surface is, 0 = J dg = JG ds
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. d Magnetism 8
. i Electrostatics s 9 »
8 O Electricity, "
. 28
i b8 the charge in @ small volume element dy L
t en \
dq . Wy l

Volume charg .
as
define the volume charge density

dg=pdv

Total charge in the volume is, Q = f dg = f pdv

> 1.11 Electric Field and Potential for Some Simple
(A) Uniformly Charged Rod (Along the A).(is)

= A dx prody :
an electric field, df =—%4__ __Adx Produces at the pojy

is,
E= a+’__l__¢§_h=__£_fa+l dx A [ 1
41‘(8012 471:80 - ;=ZEE—[};“— J
0
Thus
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Field and Potentials O 9

Al Yarge distance from the rod, @ > >/, and the field becomes. E = ——sz— . Thus

4ne a

at large distances, the rod behaves like a point charge.
The potent al at p can

also be calculated in a similar way. The element of charge
dq =\ dx produccs at p

the potential,
A dx
4me ox
The total potential at p is therefore,
V=j:+l }\,dx = A, in((l'f"}

dmegx  4me 0 a

dV =

It can be verified from this expression that the electric field is,
E-_-_(_IK—_-‘_)L._. a ( ! )_ A I Q
da dreg \a+1)\ 42 —41ren a(a+1) dnegaa +1)
(B) Uniformly Charged Rod (at the Perpendicular Bisector)

We consider a rod of length £ with a uniform charge density A and a total charge O
is lying along the x-axis, as illustrated in the figure. We wish to compute the clectric
ficld at a point P, located at a distance y from the center of the rod along its

perpendicular bisector. An element of length dx” carrying charge, dg =AM\ dx’
contributes to the electric field

1 it
dE = =
aney (x'? + y?)
y-axis
dE dE
rr 3 g )I
Sy
F X 3§
C_ MW O— x-axis
ax’ 0 dx’
{

Symmetry argument suggests that the x-component of the electric field vanishes
and only y-component survives. Now the y-component of dE is
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atatite> ="
[actro” )

Elaclrlcuy’ | }‘, _/jf b4
10 " (x" + ') ofx? G o3
. VAT P

o
4 ’1

. entire TOd 19
. ey the Ertire 7005
i ficld duc 10 ’ [ 7%
I -u)fﬂl electt ", 112 .{f‘: ; e 753
Thus the Y ] G My [
142 (J{ (4 1[;(1“1&)\/ . B,

!’1‘}- x j{/ﬁ’y - 4.‘,"61".(; "

q -
e 9. PR e ‘2»- '2
~ Aneo y\/(lfl} FX
. expression reluces o g
yo>h the above expression T luces to e <

D,

. 'J!rlh-ﬂ
A
2

In the Jimit whert,
q

ll‘m“: L Ve et
B,=;
admeyy
{ ite & imi - ":;"'ﬁf.ﬂﬁ
On the other hand, in infinité length lirmit [>> y; the systen, fag ..
7 K
and T
gty 1 2 ;

# e r—— —

Yo 4me, ¥

p

ned by performing the integration
/ . ’
1P Ay

Vs ameese —
41'[80 _);2 /(XJZ +}/2)

(c) Uniformly Charged Ring

We consider a uniformly charged circular ring of radius g havi

density A. The potential at the point P due to an element of lengn dwtﬁ
o kdl 1 A di )

Ameyr 4neom

The potential at P can be obtai

g ‘ine :(.'-Ei

tn&:r-)’ g
33

dl

dEsing g
dE

dl

Since contribyti
. ution to th :
potentia] at P ; € potential of
ill be Ot such small el ‘ % 4
emental length is same. 2%

& Zi** \A‘ﬁ& 1 ")
e ey Y
Qs the ¢ 0 W e T 0
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This shows that peye Field and Potentials ™ 11

...... - utial jq
decreasces with increqsip 1al iy max

i v .
B mum at x < yn
The symmeiry of the prol
) s’ Moble 1
wfﬂl“’f‘“m of the cleetie ﬁt-n‘m MIBPests that the E l
axis of the ring wiy Ct ut, wpe Whcutar 1 e |
il th? gite, il * WVltle the component
clectric field will yo |
magnitude of' the fiel « o 18 I
e ﬂt it LR § 1 [ g ; v
ed from the expression for B, such that ' = -V},

fhux the resultant

Thus, -
E\ ‘:_,,“‘:/',’7 _— (1"' "
st |
dx
=t
, e 1 Yo vtk sistor slone i
drme,, (@’ +x2)72 [x = unit vector along x|
N“‘“"‘*-—-—-—--*.._._d.’__ .
E(.\‘.) T
M- .....

The 1ocat10q of maximum electric field is obtained by sefting L =0. It can be
X

shown that £ will be maximum at x = + -%

N

If the point P is far away from the ring, i.e., when x >> a, then, E= LI "

41‘80 x2 -

’Ihus. at large distances from the charge distribution, the ring behaves like a point
charge. Figure shows the variation of potential (upper) and field (lower) with distance.

(D) Uniformly Charged Disc
Suppose we have a charge O smeared out uniformly over a disk of radius a, so that
the charge per unit area ¢ =(/na’. We want to calculate potential ¥ and field E at a

distance x from the centre of the disk. We may consider the disk to be made out of an
infinite number of infinitesimally thin rings and use above results. One such ring of
radius r and thickness dr is shown in the figure. The charge contained on this ring is
(2mr dr) 6. The potential at the point P due to this charge is

1 Q@Qmurdr)c o rdr

dv = =
dne, [2 1,2 2% %, [? 2

The total potential at P, which is the sum of all such contribution from all rings, is

given by
o Ja rdr 2: [ ’a2+x2 "Ix']
0

V= =
o0 [7 42

___4
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ntre of the disc and 1s given by,
: at the €€

s maxit oa
] is maxl _oa
The potentla v = -~
i« oiven by,
The electric field at £ 15 &1 ) dv X
: E. =— VV == dx

I

X A
G , 2 .
— |- 0
250[ ya© +x

| A forxey -
and , 250 a 2 +x 2
At the centre of the disc, (x=0) and ) E
E- Zsi.
0
. s g . \ - '
Figure illustrates the Vaniation of field with !
distance from, the centre, '
112 lectrie Flux ang Gauss’s Law
Calculation of e elect: . T
" Compliggeg g oty “Oniuous charge distribution can becost
SOme Sofell : K
g Py c ar.ge dlstnbunons. However, It-turqs out that, ;fcerﬁl ;
Y means of 5's lawarg outon, i j Possible tq, determine the electric fi
Oncept op I tric Understan

: Uss’s law W€ must first undeﬁmdtk

|
h er
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surface is called ap electric f
quantitative meagyre of the number of 1;
vector field that paggeg p f lines of a

ol : el‘pendicularly through a
surface. Figure shows gy electric field f i
through a portion of 5 surfa 1 P

Ce of area A The area of
the surface can be Iepresented by a vector, 4 = 4

rmal to the surface.
$ defined to be,

-

where, 71 is a unit vector no
The electric flux is thy,

bp =E. A=FEdcosp

If E points same direction as that of n, then,

-

¢E =Eo:li..—-_EA

The electric flux is considered positive if the
electric field lines are leaving the surface, and
negative if the field lines are entering the surface.

Gauss’s law

Gauss’s law for electrostatics says that the electric flux ¢, passing through a
closed surface surrounding a point ¢

harge g is equal to the total charge g contained
within the Gaussian surface divided by the free space permittivity.

o794
Mathematically, bp =QE «dd = a
We can prove the above formula for a point charge in a simple way.
: E A
E E
- ~E dA
<+ S )
E -
E
E E
Ev

I . ﬂ . ﬁ v, . . ] - ] 3

] ' i infinitesimal
direction of E is different at different point. Hence if .welcons1der an
infinitesi s
surface areas dA, the flux through the 1nﬁn1£e‘31mfl area
' doy =E +dA
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sian surface becomeg the ¢
of the Gaussial e )
The mrajfﬂuﬁg;;ll the infinitesimal areas dA, anq
2o o D, . throt
fluxes d Pg

e of
" » is Bivey byall the il‘lr
be =j:d¢f~" :j;E'dA '

In-
ll“ijl}
5 3
t 3 ’
integration is performed over the Ezr::afﬁ?sled Surfy, i .
o tb_e lﬂ%‘s’; electric vector £'is everyw al from, the oimu th Wh
L here radial, hence Qhargelch b,
N Y L i f,
dA is also everyw bR edinf @ ; |
¢E f J£47[80r2 A4 [B§ iq,:
" ) ¢
; i aussian surfac - §
: adius of the spherical G €and g Ongg N
Here r is the rah e is 472 Hence, ang A|
~ 4 spner N B ‘ SQ,
surface area of a sp g =§E-d.4:'_g*'*2- I
= 4TCS of
fdA = 2 4ﬂrr2 = —g_
4re,r g,

Although the above equation . has nee;a
d n'm:'ed for; point charge, it is true, in genera L
e - - -
for any kind of charge distribution. '
For an arbitrary closed surface enclosing
the point charge ¢ the net flux is

- I q ?A'od_g
b= E.dA_4m0§ >

g f}ﬁ-ﬁdA

f-ﬁd’A_ dA cosH

Now, . —}_2__ =dQ is the solid angle subten-ded by the Sirface g,
the location of the point charge ¢. N oW,
0 =4n‘{£0 $aq =ngj 4n =fg
where, f dQ =47 (s teradians

) 1s the total solj
the location of g.
otk % Differentiaj Fq

Now Instead of
a@ volume charge de

rm of Gauss’s Law

4point charge g [f fpe charge is distributed over a volumel’?
N5ty p, then the charge 9 can be written ag q= §p dv

be written as,
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‘g Piver

v - , cQre » " .
e @ volume integry) Thus m, left hand side of the above equation can be converted

VeEgr=L
J E dV _.onpd]v

S‘ o tha - s
Muce the volume g7 1s arbitary, we have
ﬁ L E = B‘
Ti » 5 ~ - E 0
us 1s the differentia] form of Gauss’s IaW

» 1.14 Coulomb’s Law From Gauss Theorem

We consider a point charge ¢,

: G, located i :
to this charge over 3 spherical somewhere in space. The electric field due

surface of radius r surrounding the charge will be

uniform and have the g A
: ame magnitude at i R . i
spherical surface yields, gn all points. Application of Gauss’s law on this

§E.d5 =10

Since £ and d§ hav irect o
_ Since E and dS have the same direction at all points on the surface and E 18
uniform, we can write,

E(@n?)=1o

If another point charge g; is placed at any point on the surface, the force
experienced by g, will be
919 -
5 r.
dme r*

This is Coulomb’s law.

» 1.15 Application of Gauss’s Law

Gauss’s law is very useful in calculating the field due to charge distribution which
has some kind of symmetry. A number of cases is discussed below.
1. The Electric Field of a Spherically Symmetric Uniform Charge Distribution

(Solid sphere)
Let us consider a spherically symmetric distribution of total electric charge g. We
assume that the charge is distributed uniformly over a solid sphere of radius a and has a

volume charge density p. Hence, we can write,

1
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- Jeci T
i O B = _;gm;p_

jeld at points inside and Outsig, i
: e

~C .'trllc t
e elec lid Sphere thQrQ

1 outside the SO . |
a) The Emcm'f F'::j clectric field ,Ol.lt,sf::j;cs;lhocv:r]: };:31[1(;111 ?—lStribu lop

To determ” Eoul Gaussian S}ITFJ“' ; _:‘ - igure, of a

the glectric: BTl & JUHS® Be mdially Outyyg Yy

(A of the spherical Gaussiap " g,

d points outward in the radial directi(:]ce i ) lhet:_

[ and the element of area Vector d.;f.js Cne, g

ra S
we dri g that

.11 SUZEES e
yroblenl blg:.* ) ~[cm€ﬂf0r area

- atgpon. BT
Jistributld e A e -
clectric field vector

qween the :
- W ylck S,

-Gauss's I )
of Gauss %E’ i =§E i _q__
€9

Gaussian
surface

Since magnitude of £ is uniform over the Gaussian surface, we i
bl

q

Ebdd =——

faa=_

E(4ﬂ:”2)=i

€
= | Fo_ 4
47t80r2

Thus outside a spherical charge distribution 4
electic field of  point charge g, the electric .ﬁeld looks

We can also write, £ = 1= (ﬂ 3) pa3

Potentia]
1aln the region cap pe calculated from the relation
E=—Vo=_ 199 .
or
- 5 |
(p“".Edr:“ "Ei*dr— pa 3L [Csconsﬂ
38 0 ¥ 2 38 0 2
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(b) The Electric Fielg Inside the S0l

To f}nd the electric field
distribution, we draw g pe
radius .r(r<a) that enclq

whefg q & the amount of charge now contained within the ~Ooussiansurface
new (aussian surface and is Jess than the total spherical charge g.

Now the vol itvp i
1 ume charge density p is the same for the total charge (¢ ) as it is for the
charge enclosed in the new Gaussian surface ( q’). That is |

7

=9 9
P 2
4 5
&4 o 3
= I'—‘: ——— 2 = r
q QV 9’4 3—‘1;3
—Ta
3
Hence, SEEdAzq—zii—
€y € a’

E being uniform on the Gaussian surface, we can take it out of the integral. Hence, we

get,
E(4mr” =—q——’?
80 a
1 4 4
= E=—1 r3 - (H na’p) : *,pi
dne, q° 4mey \3 a’ 3
Thus we see that electric field E?

intensity E  inside the charge
distribution is directly proportional to
the radial distance » from the center of
the charge distribution.

At the surface of the sphere, the
tield becomes,

E=£2
3,
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st \hnuu.llu-v..-umlmlwft"l't“" frcled s
e L

distrlmiion
Here also the potentis al e

Qo jf:'ef.f-

1 outgyg | the
"ﬁ'
1 be calcalated as, hl:'it‘.q

[P e B s,
o 1)

e
; hes that i - el e sy on
[he boundary condition wpHe p o e a (g o
: 2 Ty
i :
pett v h\
ey oy

pa i P ; ]m:

. » .
’ e, 00, B PN

_pr : PN‘ P13, »
Iherelore, P- e, 260 M, 3 }

2. Field Inside a Hollow Sphore

As a further example involving spherncal symmetry,
let us consider a hollow sphencally symmetnie charpe
distribution containing a charge ¢ To find the electne
ficld inside all of charpes, we draw a spheneal Gaussian
surfice of radius 7, where 218 smalier than the mney
radius of the hollow ball. By symmetry, the clectiie licld
must point in the radial direetion and have the same
magnitude everywhere on the Gaussian surface. Now

Giauss’s law gives,

ff;‘. i iy 0 X

En

But the Gaussian surface '!I(.fmunu Lh.uyL atall (g = 0). The

reforg,
: > LI
\ [/
E.4nr = —-! =)
Ey
- E =0,

Ihus there 1s no field inside the hollow sphere of charge.
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Field Outside the Hollow Sphere

To calculate the field outside the hollow sphere, we consider a spherical (Gaussian
surface of radius r, greater than the outer radius of the hollow sphere. By symme ¥
; ficld will be directed radially outwards and has same magnitude at all points on this
Gaussian surface. Hence, Gauss's law gives,

. i (
f li‘ . (L»f —— ,'j- : “K!‘I - ,I
: .
= E= - -
dne r”
4qe o r°

Thus the hollow sphere behaves like a point charge at outside point.
3. Infinitely Long Rod of Uniform Charge Density

Let us consider an infinitely long rod of negligible radius having a uniform e
charge density . We wish to calculate the electric field at a distance » from the wire
The geometry of the problem suggests that it has cylindrical symmetry and the ¢lectric
field £ must point radially away from the axis of the rod. The magnitude of the electnc

field is constant on cylindrical surfaces of radius r. Therefore, we choose a coaxial
cylinder as our Gaussian surface.

Gaussian surface
The amount of charge enclosed by the cylindrical Gaussian surface of radius r and
length /is ¢ = AL The Gaussian surface consists of three parts: two flat ends and the
curved side wall. Now the contribution to the flux through the two end faces is zero, as

- direction of £ is normal to the direction of the surface dA. So only contribution to the
flux comes from the curved surface. Application of Gauss's law therefore gives,

&E’ . dA =)£E dA =ﬂ_=£
€0 & |
j As|E|is same throughout the curved Gaussian surface, we have,

E (2nrl) = M
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: For a cyhn_drically symmetric Charge diStI‘ibUtiOn, the chargc densily deCﬂdS
only upon the distance from the axig of the cylinder and must not vary along the axis of

thc. cylinder: Let us Consider a soljq cylinder of radius R and length ! charged
uniformly with a total charge 9. The volume charge density of the distribution is

q
R

|’) =
Field Qutside the Cylinder (r

To find the electric fi
the axis, we consider a
surface of length / and

>R):

eld at a distance r> R from
coaxial cylindrical Gaussian

radius r. By symmetry, the
electric field will be directed along the radius of the

Gaussian cylinder. The two end faces of the Gaussian
surface will contribute nothing to the flux and only '
contribution comes from the curved surface. Hence,
application of Gauss’s law gives,

JE.di=fEpat=1
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Field Inside the Cylinder (r <R):

This time we consider the Gaussian cylinder of radius r (+ < R) inside the charged

cylinder of radius R. Symmetry arguments remains same as before. Thus Gausss law
gives,

§E.d2=§EdA=g—;;

Here ¢’ = charge enclosed by Gaussian cylinder.

’ 2 \
_q __ 9 _(w Dp _pr |
E(anl)—a = E_Zneorl 2nggrl 2,
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