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Fourier Transforms and Their Applications

“The profound study of nature is the most fertile source of math-
ematical discoveries.”

Joseph Fourier

“The theory of Fourier series and integrals has always had ma-
jor difficulties and necessitated a large mathematical apparatus in
dealing with questions of convergence. It engendered the develop-
ment of methods of summation, although these did not lead to a
completely satisfactory solution of the problem. ... For the Fourier
transform, the introduction of distributions (hence, the space S )
is inevitable either in an explicit or hidden form. ... As a result
one may obtain all that is desired from the point of view of the
continuity and inversion of the Fourier transform.”

Laurent Schwartz

2.1 Introduction

Many linear boundary value and initial value problems in applied mathemat-
ics, mathematical physics, and engineering science can be effectively solved by
the use of the Fourier transform, the Fourier cosine transform, or the Fourier
sine transform. These transforms are very useful for solving differential or in-
tegral equations for the following reasons. First, these equations are replaced
by simple algebraic equations, which enable us to find the solution of the
transform function. The solution of the given equation is then obtained in
the original variables by inverting the transform solution. Second, the Fourier
transform of the elementary source term is used for determination of the fun-
damental solution that illustrates the basic ideas behind the construction and
implementation of Green’s functions. Third, the transform solution combined
with the convolution theorem provides an elegant representation of the solu-
tion for the boundary value and initial value problems.

We begin this chapter with a formal derivation of the Fourier integral for-
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16 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

mulas. These results are then used to define the Fourier, Fourier cosine, and
Fourier sine transforms. This is followed by a detailed discussion of the basic
operational properties of these transforms with examples. Special attention is
given to convolution and its main properties. Sections 2.10 and 2.11 deal with
applications of the Fourier transform to the solution of ordinary differential
equations and integral equations. In Section 2.12, a wide variety of partial
differential equations are solved by the use of the Fourier transform method.
The technique that is developed in this and other sections can be applied
with little or no modification to different kinds of initial and boundary value
problems that are encountered in applications. The Fourier cosine and sine
transforms are introduced in Section 2.13. The properties and applications
of these transforms are discussed in Sections 2.14 and 2.15. This is followed
by evaluation of definite integrals with the aid of Fourier transforms. Section
2.17 is devoted to applications of Fourier transforms in mathematical statis-
tics. The multiple Fourier transforms and their applications are discussed in
Section 2.18.

2.2 The Fourier Integral Formulas

A function f(x) is said to satisfy Dirichlet’s conditions in the interval −a<
x< a, if

(i) f(x) has only a finite number of finite discontinuities in −a< x<a and
has no infinite discontinuities.

(ii) f(x) has only a finite number of maxima and minima in −a<x< a.
From the theory of Fourier series we know that if f(x) satisfies the Dirichlet
conditions in −a< x<a, it can be represented as the complex Fourier series

f(x) =
∞∑

n=−∞
an exp(inπx/a), (2.2.1)

where the coefficients are

an=
1

2a

a∫

−a
f(ξ) exp(−inπξ/a)dξ. (2.2.2)

This representation is evidently periodic of period 2a in the interval. However,
the right-hand side of (2.2.1) cannot represent f(x) outside the interval −a<
x< a unless f(x) is periodic of period 2a. Thus, problems on finite intervals
lead to Fourier series, and problems on the whole line −∞<x<∞ lead to the
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Fourier integrals. We now attempt to find an integral representation of a non-
periodic function f(x) in (−∞,∞) by letting a→∞. As the interval grows
(a→∞) the values kn=

nπ
a become closer together and form a dense set. If

we write δkn=(kn+1 − kn) =
π
a and substitute coefficients an into (2.2.1), we

obtain

f(x) =
1

2π

∞∑
n=−∞

(δkn)

⎡
⎣

a∫

−a
f(ξ) exp(−iξkn)dξ

⎤
⎦ exp(ixkn). (2.2.3)

In the limit as a→∞, kn becomes a continuous variable k and δkn becomes
dk. Consequently, the sum can be replaced by the integral in the limit and
(2.2.3) reduces to the result

f(x) =
1

2π

∞∫

−∞

⎡
⎣

∞∫

−∞
f(ξ)e−ikξdξ

⎤
⎦ eikxdk. (2.2.4)

This is known as the celebrated Fourier integral formula . Although the above
arguments do not constitute a rigorous proof of (2.2.4), the formula is correct
and valid for functions that are piecewise continuously differentiable in every
finite interval and is absolutely integrable on the whole real line.

A function f(x) is said to be absolutely integrable on (−∞,∞) if

∞∫

−∞
|f(x)|dx<∞ (2.2.5)

exists.
It can be shown that the formula (2.2.4) is valid under more general condi-

tions. The result is contained in the following theorem:

THEOREM 2.2.1 (The Fourier Integral Theorem).
If f(x) satisfies Dirichlet’s conditions in (−∞,∞), and is absolutely inte-
grable on (−∞,∞), then the Fourier integral (2.2.4) converges to the function
1
2 [f(x+ 0) + f(x− 0)] at a finite discontinuity at x. In other words,

1

2
[f(x+ 0) + f(x− 0)]=

1

2π

∞∫

−∞
eikx

⎡
⎣

∞∫

−∞
f(ξ)e−ikξdξ

⎤
⎦ dk. (2.2.6)

This is usually called the Fourier integral theorem.
If the function f(x) is continuous at point x, then f(x+ 0)= f(x− 0)=

f(x), then (2.2.6) reduces to (2.2.4).
The Fourier integral theorem was originally stated in Fourier’s famous trea-

tise entitled La Théorie Analytique da la Chaleur (1822), and its deep signifi-
cance was recognized by mathematicians and mathematical physicists. Indeed,
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this theorem is one of the most monumental results of modern mathematical
analysis and has widespread physical and engineering applications.

We express the exponential factor exp[ik(x− ξ)] in (2.2.4) in terms of
trigonometric functions and use the even and odd nature of the cosine and
the sine functions respectively as functions of k so that (2.2.4) can be written
as

f(x) =
1

π

∞∫

0

dk

∞∫

−∞
f(ξ) cos k(x− ξ)dξ. (2.2.7)

This is another version of the Fourier integral formula. In many physical
problems, the function f(x) vanishes very rapidly as |x|→∞, which ensures
the existence of the repeated integrals as expressed.

We now assume that f(x) is an even function and expand the cosine function
in (2.2.7) to obtain

f(x) = f(−x) = 2

π

∞∫

0

cos kx dk

∞∫

0

f(ξ) cos kξ dξ. (2.2.8)

This is called the Fourier cosine integral formula.
Similarly, for an odd function f(x), we obtain the Fourier sine integral

formula

f(x) =−f(−x)= 2

π

∞∫

0

sin kx dk

∞∫

0

f(ξ) sin kξ dξ. (2.2.9)

These integral formulas were discovered independently by Cauchy in his work
on the propagation of waves on the surface of water.

2.3 Definition of the Fourier Transform and Examples

We use the Fourier integral formula (2.2.4) to give a formal definition of the
Fourier transform.

DEFINITION 2.3.1 The Fourier transform of f(x) is denoted by F{f(x)}=
F (k), k ∈R, and defined by the integral

F{f(x)}=F (k) =
1√
2π

∞∫

−∞
e−ikxf(x)dx, (2.3.1)

where F is called the Fourier transform operator or the Fourier transfor-
mation and the factor 1√

2π
is obtained by splitting the factor 1

2π involved in
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(2.2.4). This is often called the complex Fourier transform. A sufficient condi-
tion for f(x) to have a Fourier transform is that f(x) is absolutely integrable
on (−∞,∞). The convergence of the integral (2.3.1) follows at once from the
fact that f(x) is absolutely integrable. In fact, the integral converges uniformly
with respect to k. Physically, the Fourier transform F (k) can be interpreted as
an integral superposition of an infinite number of sinusoidal oscillations with
different wavenumbers k (or different wavelengths λ= 2π

k ).
Thus, the definition of the Fourier transform is restricted to absolutely inte-

grable functions. This restriction is too strong for many physical applications.
Many simple and common functions, such as constant function, trigonomet-
ric functions sin ax, cos ax, exponential functions, and xnH(x) do not have
Fourier transforms, even though they occur frequently in applications. The
integral in (2.3.1) fails to converge when f(x) is one of the above elemen-
tary functions. This is a very unsatisfactory feature of the theory of Fourier
transforms. However, this unsatisfactory feature can be resolved by means of
a natural extension of the definition of the Fourier transform of a general-
ized function, f(x) in (2.3.1). We follow Lighthill (1958) and Jones (1982) to
discuss briefly the theory of the Fourier transforms of good functions.

The inverse Fourier transform, denoted by F−1{F (k)}= f(x), is defined
by

F−1{F (k)}= f(x) =
1√
2π

∞∫

−∞
eikx F (k) dk, (2.3.2)

where F−1 is called the inverse Fourier transform operator.

Clearly, both F and F−1 are linear integral operators. In applied math-
ematics, x usually represents a space variable and k(= 2π

λ ) is a wavenum-
ber variable where λ is the wavelength. However, in electrical engineering, x
is replaced by the time variable t and k is replaced by the frequency vari-
able ω(= 2πν) where ν is the frequency in cycles per second. The function
F (ω) =F{f(t)} is called the spectrum of the time signal function f(t). In elec-
trical engineering literature, the Fourier transform pairs are defined slightly
differently by

F{f(t)}=F (ν) =

∞∫

−∞
f(t)e−2πνitdt, (2.3.3)

and

F−1{F (ν)}= f(t) =

∞∫

−∞
F (ν)e2πiνtdν =

1

2π

∞∫

−∞
F (ω)eiωtdω, (2.3.4)

where ω=2πν is called the angular frequency. The Fourier integral formula
implies that any function of time f(t) that has a Fourier transform can be
equally specified by its spectrum. Physically, the signal f(t) is represented as
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an integral superposition of an infinite number of sinusoidal oscillations with
different frequencies ω and complex amplitudes 1

2πF (ω). Equation (2.3.4) is

called the spectral resolution of the signal f(t), and F (ω)
2π is called the spectral

density. In summary, the Fourier transform maps a function ( or signal) of time
t to a function of frequency ω. In the same way as the Fourier series expansion
of a periodic function decomposes the function into harmonic components,
the Fourier transform generates a function (or signal) of a continuous variable
whose value represents the frequency content of the original signal. This led to
the successful use of the Fourier transform to analyze the form of time-varying
signals in electrical engineering and seismology.

Next we give examples of Fourier transforms.

Example 2.3.1 Find the Fourier transform of exp(−ax2). Then find
∞∫

−∞
x2 e−ax

2

dx.

In fact, we prove

F (k) =F{exp(−ax2)}= 1√
2a

exp

(
−k

2

4a

)
, a > 0. (2.3.5)

Here we have, by definition,

F (k) =
1√
2π

∞∫

−∞
e−ikx−ax

2

dx

=
1√
2π

∞∫

−∞
exp

[
−a

(
x+

ik

2a

)2

− k2

4a

]
dx

=
1√
2π

exp(−k2/4a)
∞∫

−∞
e−ay

2

dy=
1√
2a

exp

(
−k

2

4a

)
,

in which the change of variable y= x+ ik
2a is used. The above result is correct,

but the change of variable can be justified by the method of complex analysis
because (ik/2a) is complex. If a= 1

2

F{e−x2/2}= e−k
2/2. (2.3.6)

This shows F{f(x)}= f(k). Such a function is said to be self-reciprocal un-
der the Fourier transformation. Graphs of f(x) = exp(−ax2) and its Fourier
transform is shown in Figure 2.1 for a=1.
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Alternatively, (2.3.5) can be proved as follows:

F ′(k) =
1√
2π

∞∫

−∞
(−ix)e−ikx−ax2

dx

=
i

2a

1√
2π

∞∫

−∞

[
(−2ax)e−ax

2
]
e−ikxdx

which is, integrating by parts,

F ′(k) =
i

2a
√
2π

⎧⎨
⎩
[
e−ax

2−ikx
]∞
−∞

+

∞∫

−∞
(ik)e−ax

2−ikx dx

⎫⎬
⎭

= − k

2a
F (k).

The solution for F (k) is F (k) =A(k)e−
k2

4a so that

A(0)=F (0)=
1√
2π

∞∫

−∞
e−ax

2

dx=
1√
2π

√
π

a
=

1√
2a
.

Thus, F (k) = 1√
2a
e−

k2

4a .

Using (2.3.5), we prove that

I =

∞∫

−∞
e−ax

2

=

√
π

a
, a> 0.

It follows from (2.3.5) that

∞∫

−∞
e−ikx−ax

2

dx =
√
2π F (k) =

√
π

a
e−

k2

4a .

This is true for all k, and hence, putting k=0 we obtain the desired result.
Differentiating once under the integral sign with respect to a gives

∞∫

−∞
x2 e−ax

2

dx =
1

2

√
π

a3
=

1

2a

√
π

a
.

Differentiating the integral I, n times with respect to a, yields
∞∫

−∞
x2n e−ax

2

dx =
1.3.5......(2n− 1)

2n

√
π

a2n+1

=
1.3.5......(2n− 1)

(2a)n

√
π

a
.
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Figure 2.1 Graphs of f(x) = exp(−ax2) and F (k) with a=1.

Example 2.3.2 Find the Fourier transform of exp(−a|x|), i.e.,

F{exp(−a|x|)}=
√

2

π
· a

(a2 + k2)
, a > 0. (2.3.7)

Here we can write

F
{
e−a|x|

}
=

1√
2π

∞∫

−∞
e−a|x|−ikxdx

=
1√
2π

⎡
⎣

∞∫

0

e−(a+ik)xdx+

0∫

−∞
e(a−ik)xdx

⎤
⎦

=
1√
2π

[
1

a+ ik
+

1

a− ik

]
=

√
2

π

a

(a2 + k2)
.

We note that f(x) = exp(−a|x|) decreases rapidly at infinity, it is not differ-
entiable at x=0. Graphs of f(x) = exp(−a|x|) and its Fourier transform is
displayed in Figure 2.2 for a=1.

Example 2.3.3 Find the Fourier transform of

f(x) =

(
1− |x|

a

)
H

(
1− |x|

a

)
,

where H(x) is the Heaviside unit step function defined by

H(x) =

{
1, x> 0
0, x< 0

}
. (2.3.8)
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Figure 2.2 Graphs of f(x) = exp(−a|x|) and F (k) with a=1.

Or, more generally,

H(x− a) =

{
1, x> a
0, x< a

}
, (2.3.9)

where a is a fixed real number. So the Heaviside function H(x− a) has a finite
discontinuity at x= a.

F{f(x)} =
1√
2π

a∫

−a
e−ikx

(
1− |x|

a

)
dx=

2√
2π

a∫

0

(
1− x

a

)
cos kx dx

=
2a√
2π

1∫

0

(1− x) cos(akx)dx=
2a√
2π

1∫

0

(1− x)
d

dx

(
sinakx

ak

)
dx

=
2a√
2π

1∫

0

sin(akx)

ak
dx=

a√
2π

1∫

0

d

dx

⎡
⎢⎢⎢⎣
sin2

(
akx

2

)

(
ak

2

)2

⎤
⎥⎥⎥⎦ dx

=
a√
2π

sin2
(
ak

2

)

(
ak

2

)2 . (2.3.10)

Example 2.3.4 Find the Fourier transform of the characteristic function
χ[−a,a](x), where

χ[−a,a](x) =H(a− |x|) =
{
1, |x|<a
0, |x|>a

}
. (2.3.11)
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We have

Fa(k) =F{χ[−a,a](x)} =
1√
2π

∞∫

−∞
e−ikxχ[−a,a](x) dx

=
1√
2π

a∫

−a
e−ikx dx=

√
2

π

(
sin ak

k

)
. (2.3.12)

Graphs of f(x) =χ[−a,a](x) and its Fourier transform are shown in Figure 2.3
for a=1.
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Figure 2.3 Graphs of χ[−a,a](x) and Fa(k) with a=1.

2.4 Fourier Transforms of Generalized Functions

The natural way to define the Fourier transform of a generalized function,
is to treat f(x) in (2.3.1) as a generalized function. The advantage of this is
that every generalized function has a Fourier transform and an inverse Fourier
transform, and that the ordinary functions whose Fourier transforms are of
interest form a subset of the generalized functions. We would not go into great
detail, but refer to the famous books of Lighthill (1958) and Jones (1982) for
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the introduction to the subject of generalized functions.

A good function, g(x) is a function in C∞(R) that decays sufficiently rapidly
that g(x) and all of its derivatives decay to zero faster than |x|−N as |x|→∞
for all N > 0.

DEFINITION 2.4.1 Suppose a real or complex valued function g(x) is
defined for all x∈R and is infinitely differentiable everywhere, and suppose
that each derivative tends to zero as |x| →∞ faster that any positive power of(
x−1

)
, or in other words, suppose that for each positive integer N and n,

lim
|x|→∞

xN g(n)(x) = 0,

then g(x) is called a good function.

Usually, the class of good functions is represented by S. The good functions
play an important role in Fourier analysis because the inversion, convolution,
and differentiation theorems as well as many others take simple forms with no
problem of convergence. The rapid decay and infinite differentiability proper-
ties of good functions lead to the fact that the Fourier transform of a good
function is also a good function.

Good functions also play an important role in the theory of generalized func-
tions. A good function of bounded support is a special type of good function
that also plays an important part in the theory of generalized functions. Good
functions also have the following important properties. The sum (or difference)
of two good functions is also a good function. The product and convolution
of two good functions are good functions. The derivative of a good function
is a good function; xn g(x) is a good function for all non-negative integers
n whenever g(x) is a good function. A good function belongs to Lp (a class
of pth power Lebesgue integrable functions) for every p in 1 ≤ p ≤ ∞. The
integral of a good function is not necessarily good. However, if φ(x) is a good
function, then the function g defined for all x by

g(x) =

∫ x

−∞
φ(t) dt

is a good function if and only if
∫∞
−∞ φ(t) dt exists.

Good functions are not only continuous, but are also uniformly continuous
in R and absolutely continuous in R. However, a good function cannot be
necessarily represented by a Taylor series expansion in every interval. As an
example, consider a good function of bounded support

g(x) =

{
exp[−(1− x2)−1], if |x|< 1

0, if |x| ≥ 1

}
.
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The function g is infinitely differentiable at x= ±1, as it must be in order to
be good. It does not have a Taylor series expansion in every interval, because
a Taylor expansion based on the various derivatives of g for any point having
|x| > 1 would lead to zero value for all x.

For example, exp(−x2), x exp(−x2), (1 + x2
)−1

exp(−x2), and sech2x are
good functions, while exp(−|x|) is not differentiable at x=0, and the function(
1 + x2

)−1
is not a good function as it decays too slowly as |x|→∞.

A sequence of good functions, {fn(x)} is called regular if, for any good
function g(x),

lim
n→∞

∫ ∞

−∞
fn(x) g(x) dx (2.4.1)

exists. For example, fn(x) =
1
n φ(x) is a regular sequence for any good function

φ(x), if

lim
n→∞

∫ ∞

−∞
fn(x) g(x) dx= lim

n→∞
1

n

∫ ∞

−∞
φ(x) g(x) dx = 0 .

Two regular sequences of good functions are equivalent if, for any good func-
tion g(x), the limit (2.4.1) exists and is the same for each sequence.

A generalized function, f(x), is a regular sequence of good functions, and
two generalized functions are equal if their defining sequences are equivalent.
Generalized functions are, therefore, only defined in terms of their action on
integrals of good functions if

〈f, g〉 =
∫ ∞

−∞
f(x) g(x) dx= lim

n→∞

∫ ∞

−∞
fn(x) g(x) dx= lim

n→∞ 〈fn, g〉 (2.4.2)

for any good function, g(x), where the symbol 〈f, g〉 is used to denote the
action of the generalized function f(x) on the good function g(x), or 〈f, g〉
represents the number that f associates with g. If f(x) is an ordinary function

such that
(
1 + x2

)−N
f(x) is integrable in (−∞, ∞) for some N , then the

generalized function f(x) equivalent to the ordinary function is defined as
any sequence of good functions {fn(x)} such that, for any good function g(x),

lim
n→∞

∫ ∞

−∞
fn(x) g(x) dx =

∫ ∞

−∞
f(x) g(x) dx (2.4.3)

For example, the generalized function equivalent to zero can be represented

by either of the sequences
{
φ(x)
n

}
and

{
φ(x)
n2

}
.

The unit function, I(x), is defined by

∫ ∞

−∞
I(x) g(x) dx =

∫ ∞

−∞
g(x) dx (2.4.4)



Fourier Transforms and Their Applications 27

for any good function g(x). A very important and useful good function that

defines the unit function is
{
exp

(
− x2

4n

)}
. Thus, the unit function is the gen-

eralized function that is equivalent to the ordinary function f(x) = 1.
The Heaviside function, H(x), is defined by

∫ ∞

−∞
H(x) g(x) dx =

∫ ∞

0

g(x) dx. (2.4.5)

The generalized function H(x) is equivalent to the ordinary unit function

H(x) =

{
0, x< 0
1, x> 0

(2.4.6)

since generalized functions are defined through the action on integrals of good
functions, the value of H(x) at x=0 does not have significance here.

The sign function, sgn(x), is defined by

∫ ∞

−∞
sgn(x) g(x) dx =

∫ ∞

0

g(x) dx−
∫ 0

−∞
g(x) dx (2.4.7)

for any good function g(x). Thus, sgn(x) can be identified with the ordinary
function

sgn(x) =

{−1, x< 0,
+1, x> 0.

(2.4.8)

In fact, sgn(x)= 2H(x)− I(x) can be seen as follows:

∫ ∞

−∞
sgn(x) g(x) dx =

∫ ∞

−∞
[2H(x)− I(x)] g(x) dx

= 2

∫ ∞

−∞
H(x) g(x) dx−

∫ ∞

−∞
I(x) g(x) dx

= 2

∫ ∞

0

g(x) dx−
∫ ∞

−∞
g(x) dx

=

∫ ∞

0

g(x) dx−
∫ 0

−∞
g(x) dx

In 1926, Dirac introduced the delta function, δ(x), having the following
properties

δ(x) = 0, x �=0,
(2.4.9)∞∫

−∞
δ(x)dx = 1.
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The Dirac delta function, δ(x) is defined so that for any good function φ(x),

∞∫

−∞
δ(x)φ(x) dx= φ(0).

There is no ordinary function equivalent to the delta function.
The properties (2.4.9) cannot be satisfied by any ordinary functions in clas-

sical mathematics. Hence, the delta function is not a function in the classical
sense like an ordinary function f(x), δ(x) is not a value of δ at x. However,
it can be treated as a function in the generalized sense, and in fact, δ(x) is
called a generalized function or distribution. The concept of the delta function
is clear and simple in modern mathematics. It is very useful in physics and
engineering. Physically, the delta function represents a point mass, that is a
particle of unit mass located at the origin. In this context, it may be called
a mass-density function. This leads to the result for a point particle that can
be considered as the limit of a sequence of continuous distributions which be-
come more and more concentrated. Even though δ(x) is not a function in the
classical sense, it can be approximated by a sequence of ordinary functions.
As an example, we consider the sequence of functions

δn(x) =

√
n

π
exp(−nx2), n=1, 2, 3, . . . . (2.4.10)

Clearly, δn(x)→ 0 as n→∞ for any x �=0 and δn(0)→∞ as n→∞ as
shown in Figure 2.4. Also, for all n=1, 2, 3, . . . ,

∞∫

−∞
δn(x)dx=1

and

lim
n→∞

∞∫

−∞
δn(x)dx=

∞∫

−∞
δ(x)dx=1

as expected. So the delta function can be considered as the limit of a sequence
of ordinary functions, and we write

δ(x) = lim
n→∞

√
n

π
exp(−nx2). (2.4.11)

Sometimes, the delta function δ(x) is defined by its fundamental property

∞∫

−∞
f(x)δ(x− a) dx= f(a), (2.4.12)
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Figure 2.4 The sequence of delta functions, δn(x).

where f(x) is continuous in any interval containing the point x= a. Clearly,

∞∫

−∞
f(a)δ(x− a) dx= f(a)

∞∫

−∞
δ(x− a) dx= f(a). (2.4.13)

Thus, (2.4.12) and (2.4.13) lead to the result

f(x)δ(x− a) = f(a)δ(x− a). (2.4.14)

The following results are also true

x δ(x) = 0 (2.4.15)

δ(x− a) = δ(a− x). (2.4.16)

Result (2.4.16) shows that δ(x) is an even function.
Clearly, the result

x∫

−∞
δ(y) dy=

{
1, x> 0

0, x< 0

}
=H(x)

shows that
d

dx
H(x) = δ(x). (2.4.17)
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The Fourier transform of the Dirac delta function is

F{δ(x)}= 1√
2π

∞∫

−∞
e−ikxδ(x) dx=

1√
2π
. (2.4.18)

Hence,

δ(x) =F−1

{
1√
2π

}
=

1

2π

∞∫

−∞
eikx dk. (2.4.19)

This is an integral representation of the delta function extensively used in
quantum mechanics. Also, (2.4.19) can be rewritten as

δ(k) =
1

2π

∞∫

−∞
eikx dx. (2.4.20)

The Dirac delta function, δ(x) is defined so that for any good function g(x),

〈δ, g〉=
∫ ∞

−∞
δ(x) g(x) dx= g(0). (2.4.21)

Derivatives of generalized functions are defined by the derivatives of any
equivalent sequences of good functions. We can integrate by parts using any
member of the sequences and assuming g(x) vanishes at infinity. We can obtain
this definition as follows:

〈f ′, g〉 =
∫ ∞

−∞
f ′(x) g(x) dx

= [f(x) g(x)]
∞
−∞ −

∫ ∞

−∞
f(x) g′(x) dx=−〈f, g′〉 .

The derivative of a generalized function f is the generalized function f ′ defined
by

〈f ′, g〉 = −〈f, g′〉 (2.4.22)

for any good function g.
The differential calculus of generalized functions can easily be developed

with locally integrable functions. To every locally integrable function f , there
corresponds a generalized function (or distribution) defined by

〈f, φ〉 =
∫ ∞

−∞
f(x)φ(x) dx (2.4.23)

where φ is a test function in R→C with bounded support (φ is infinitely
differentiable with its derivatives of all orders exist and are continuous).
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The derivative of a generalized function f is the generalized function f ′

defined by

〈f ′, φ〉 = −〈f, φ′〉 (2.4.24)

for all test functions φ. This definition follows from the fact that

〈f ′, φ〉 =
∫ ∞

−∞
f ′(x)φ(x) dx

= [f(x)φ(x)]
∞
−∞ −

∫ ∞

−∞
f(x)φ′(x) dx=−〈f, φ′〉

which was obtained from integration by parts and using the fact that φ van-
ishes at infinity.

It is easy to check that H ′(x) = δ(x), for

〈H ′, φ〉=
∫ ∞

−∞
H ′(x)φ(x) dx=−

∫ ∞

−∞
H(x)φ′(x) dx

=−
∫ ∞

0

φ′(x) dx=− [φ(x)]
∞
0 =φ(0)= 〈δ, φ〉 .

Another result is

〈δ′, φ〉=−
∫ ∞

−∞
δ(x)φ′(x) dx=−φ′(0) .

It is easy to verify

f(x) δ(x) = f(0) δ(x) .

We next define |x|= x sgn(x) and calculate its derivative as follows. We have

d

dx
|x|= d

dx
{x sgn(x)}= x

d

dx
{sgn(x)}+ sgn(x)

dx

dx

= x
d

dx
{2H(x)− I(x)}+ sgn(x)

= 2x δ(x) + sgn(x)= sgn(x) (2.4.25)

which is, by sgn(x)= 2H(x)− I(x) and x δ(x) = 0.
Similarly, we can show that

d

dx
{sgn(x)}=2H ′(x) = 2δ(x). (2.4.26)

If we can show that (2.3.1) holds for good functions, it follows that it holds
for generalized functions.
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THEOREM 2.4.1 The Fourier transform of a good function is a good
function.

PROOF The Fourier transform of a good function f(x) exists and is given
by

F {f(x)}=F (k) =
1√
2π

∫ ∞

−∞
e−ikx f(x) dx. (2.4.27)

Differentiating F (k) n times and integrating N times by parts, we get

∣∣∣F (n)(k)
∣∣∣ ≤

∣∣∣∣ (−1)N

(−ik)N
1√
2π

∫ ∞

−∞
e−ikx

dN

dxN
{(−ix)n f(x)} dx

∣∣∣∣
≤ 1

|k|N
1√
2π

∫ ∞

−∞

∣∣∣∣ d
N

dxN
{xn f(x)}

∣∣∣∣ dx.

Evidently, all derivatives tend to zero as fast as |k|−N as |k|→∞ for any

N > 0 and hence, F (k) is a good function.

THEOREM 2.4.2 If f(x) is a good function with the Fourier transform
(2.4.27), then the inverse Fourier transform is given by

f(x) =
1√
2π

∫ ∞

−∞
eikx F (k) dk. (2.4.28)

PROOF For any ε > 0, we have

F
{
e−εx

2

F (−x)
}
=

1

2π

∫ ∞

−∞
e−ikx−εx

2

{∫ ∞

−∞
eixt f(t) dt

}
dx.

Since f is a good function, the order of integration can be interchanged to
obtain

F
{
e−εx

2

F (−x)
}
=

1

2π

∫ ∞

−∞
f(t) dt

∫ ∞

−∞
e−i(k−t)x−εx

2

dx

which is, by similar calculation used in Example 2.3.1,

=
1√
4πε

∫ ∞

−∞
exp

[
− (k − t)2

4ε

]
f(t) dt .

Using the fact that

1√
4πε

∫ ∞

−∞
exp

[
− (k− t)2

4ε

]
dt =1,
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we can write

F
{
e−εx

2

F (−x)
}
− f(k) . 1

=
1√
4πε

∫ ∞

−∞
[f(t)− f(k)] exp

[
− (k− t)2

4ε

]
dt. (2.4.29)

Since f is a good function, we have∣∣∣∣f(t)− f(k)

t− k

∣∣∣∣ ≤ max
x∈R

|f ′(x)| .

It follows from (2.4.29) that∣∣∣F
{
e−εx

2

F (−x)
}
− f(k)

∣∣∣
≤ 1√

4πε
max
x∈R

|f ′(x)|
∫ ∞

−∞
|t− k| exp

[
− (t− k)2

4ε

]
dt

=
1√
4πε

max
x∈R

|f ′(x)| 4ε
∫ ∞

−∞
|α| e−α2

dα→ 0

as ε→ 0, where α= t−k
2
√
ε
.

Consequently,

f(k) = F {F (−x)}= 1√
2π

∫ ∞

−∞
e−ikx F (−x) dx

=
1√
2π

∫ ∞

−∞
eikx F (x) dx

=
1

2π

∫ ∞

−∞
eikx dx

∫ ∞

−∞
e−iξx f(ξ) dξ.

Interchanging k with x, this reduces to the Fourier integral formula (2.2.4)

and hence, the theorem is proved.

Example 2.4.1 The Fourier transform of a constant function c is

F {c} =
√
2π.c.δ(k). (2.4.30)

In the ordinary sense

F {c} =
c√
2π

∫ ∞

−∞
e−ikx dx

is not a well defined (divergent) integral. However, treated as a generalized

function, c= c I(x) and we consider
{
exp

(
− x2

4n

)}
as an equivalent sequence

to the unit function, I(x). Thus,

F

{
c exp

(
−x2

4n

)}
=

c√
2π

∫ ∞

−∞
exp

(
−ikx− x2

4n

)
dx
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which is, by Example 2.3.1,

= c
√
2n exp(−nk2) =√

2π.c.

√
n

π
exp(−nk2)

=
√
2π.c.δn(k) =

√
2π.c.δ(k) as n→∞,

since {δn(k)}=
{√

n
π exp

(−nk2)} is a sequence equivalent to the delta func-
tion defined by (2.4.10).

Example 2.4.2 Show that

F{e−axH(x)}= 1√
2π(ik + a)

, a > 0. (2.4.31)

We have, by definition,

F{e−axH(x)}= 1√
2π

∞∫

0

exp{−x(ik + a)}dx= 1√
2π(ik+ a)

.

Example 2.4.3 By considering the function (see Figure 2.5)
fa(x) = e−axH(x)− eaxH(−x), a > 0, (2.4.32)

find the Fourier transform of sgn(x). In Figure 2.5, the vertical axis (y-axis)
represents fa(x) and the horizontal axis represents the x-axis.

We have, by definition,

F{fa(x)} = − 1√
2π

0∫

−∞
exp{(a− ik)x}dx

+
1√
2π

∞∫

0

exp{−(a+ ik)x}dx

=
1√
2π

[
1

a+ ik
− 1

a− ik

]
=

√
2

π
· (−ik)
a2 + k2

.

In the limit as a→ 0, fa(x)→ sgn(x) and then

F{sgn(x)}=
√

2

π
· 1

ik
.

Or, F

{√
π

2
i sgn(x)

}
=

1

k
.
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Figure 2.5 Graph of the function fa(x).

Example 2.4.4 (Fourier Integral Theorem)

Using the delta function representation (2.4.12) of a continuous function
f(x), we give a short proof of the Fourier integral theorem (2.2.4). We have,
by (2.4.12) and (2.4.19),

f(x) =

∞∫

−∞
f(ξ)δ(x− ξ)dξ

=
1

2π

∞∫

−∞
f(ξ)dξ

∞∫

−∞
eik(x−ξ)dk

=
1

2π

∞∫

−∞
eikx

⎧⎨
⎩

∞∫

−∞
e−ikξf(ξ)dξ

⎫⎬
⎭ dk. (2.4.33)

This is the desired Fourier integral theorem (2.2.4).
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2.5 Basic Properties of Fourier Transforms

THEOREM 2.5.1 If F{f(x)}=F (k), then

(a) (Shifting) F{f(x− a)}= e−ikaF (k), (2.5.1)

(b) (Scaling) F{f(ax± b)}= 1

|a| e
± ibk

a F (
k

a
), a �=0 (2.5.2)

(c) (Conjugate) F{f(−x)}=F{f(x)}, (2.5.3)

(d) (Translation) F{eiaxf(x)}=F (k − a), (2.5.4)

(e) (Duality) F{F (x)}= f(−k), (2.5.5)

(f) (Composition)

∞∫

−∞
F (k)g(k)eikxdk=

∞∫

−∞
f(ξ)G(ξ − x)dξ, (2.5.6)

where G(k) =F{g(x)},
(g) (Modulation) F{f(x) cos ax}= 1

2
[F (k − a) + F (k + a)]

F{f(x) sin ax}= 1

2i
[F (k − a)− F (k + a)].

PROOF (a) We obtain, from the definition,

F{f(x− a)} =
1√
2π

∞∫

−∞
e−ikxf(x− a)dx

=
1√
2π

∞∫

−∞
e−ik(ξ+a)f(ξ)dξ, (x− a= ξ)

= e−ikaF{f(x)}.

The proofs of results (b)–(d) follow easily from the definition of the Fourier
transform. We give a proof of the duality (e) and composition (f).

We have, by definition,

f(x) =
1√
2π

∞∫

−∞
eikxF (k)dk=F−1{F (k)}.
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Interchanging x and k, and then replacing k by −k, we obtain

f(−k)= 1√
2π

∞∫

−∞
e−ikxF (x)dx=F{F (x)}.

To prove (f), we have

∞∫

−∞
F (k)g(k) eikxdk =

∞∫

−∞
g(k) eikxdk

1√
2π

∞∫

−∞
e−ikξf(ξ)dξ

=

∞∫

−∞
f(ξ)dξ

1√
2π

∞∫

−∞
e−ik(ξ−x)g(k)dk

=

∞∫

−∞
f(ξ)G(ξ − x)dξ.

In particular, when x=0, (2.5.6) reduces to

∞∫

−∞
F (k)g(k)dk =

∞∫

−∞
f(ξ)G(ξ)dξ.

This is known as the composition rule which can readily be proved.

THEOREM 2.5.2 If f(x) is piecewise continuously differentiable and abso-
lutely integrable, then

(i) F (k) is bounded for −∞<k <∞,

(ii) F (k) is continuous for −∞<k<∞.

PROOF It follows from the definition that

|F (k)| ≤ 1√
2π

∞∫

−∞
|e−ikx||f(x)|dx

=
1√
2π

∞∫

−∞
|f(x)|dx= c√

2π
,

where c=
∞∫

−∞
|f(x)|dx= constant. This proves result (i).
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To prove (ii), we have

|F (k + h)− F (k)| ≤ 1√
2π

∞∫

−∞
|e−ihx − 1||f(x)|dx

≤
√

2

π

∞∫

−∞
|f(x)|dx.

Since lim
h→0

|e−ihx − 1|=0 for all x∈R, we obtain

lim
h→0

|F (k + h)− F (k)| ≤ lim
h→0

1√
2π

∞∫

−∞
|e−ihx − 1||f(x)|dx=0.

This shows that F (k) is continuous.

THEOREM 2.5.3 (Riemann-Lebesgue Lemma).
If F (k) =F{f(x)}, then

lim
|k|→∞

|F (k)|=0. (2.5.7)

PROOF Since e−ikx =−e−ikx−iπ, we have

F (k) = − 1√
2π

∞∫

−∞
e−ik(x+

π
k )f(x)dx

= − 1√
2π

∞∫

−∞
e−ikxf

(
x− π

k

)
dx.

Hence,

F (k) =
1

2

⎧⎨
⎩

1√
2π

⎡
⎣

∞∫

−∞
e−ikxf(x)dx−

∞∫

−∞
e−ikxf

(
x− π

k

)
dx

⎤
⎦
⎫⎬
⎭

=
1

2

1√
2π

∞∫

−∞
e−ikx

[
f(x)− f

(
x− π

k

)]
dx.

Therefore,

|F (k)| ≤ 1

2
√
2π

∞∫

−∞

∣∣∣f(x)− f
(
x− π

k

)∣∣∣ dx.
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Thus, we obtain

lim
|k|→∞

|F (k)| ≤ 1

2
√
2π

lim
|k|→∞

∞∫

−∞

∣∣∣f(x)− f
(
x− π

k

)∣∣∣ dx=0.

THEOREM 2.5.4 If f(x) is continuously differentiable and f(x)→ 0 as
|x| →∞, then

F{f ′(x)}= (ik)F{f(x)}= ik F (k). (2.5.8)

PROOF We have, by definition,

F{f ′(x)}= 1√
2π

∞∫

−∞
e−ikxf ′(x)dx

which is, integrating by parts,

=
1√
2π

[
f(x)e−ikx

]∞
−∞ +

ik√
2π

∞∫

−∞
e−ikxf(x)dx

= (ik)F (k).

If f(x) is continuously n-times differentiable and f (k)(x)→ 0 as |x|→∞ for
k=1, 2, . . . , (n− 1), then the Fourier transform of the nth derivative is

F{f (n)(x)}=(ik)nF{f(x)}= (ik)nF (k). (2.5.9)

A repeated application of Theorem 2.5.4 to higher derivatives gives the
result.

The operational results similar to those of (2.5.8) and (2.5.9) hold for partial
derivatives of a function of two or more independent variables. For example,
if u(x, t) is a function of space variable x and time variable t, then

F

{
∂u

∂x

}
= ik U(k, t), F

{
∂2u

∂x2

}
=−k2 U(k, t) ,

F

{
∂u

∂t

}
=
dU

dt
, F

{
∂2u

∂t2

}
=
d2U

dt2
,

where U(k, t) =F {u(x, t)}.

DEFINITION 2.5.1 The convolution of two integrable functions f(x) and
g(x), denoted by (f ∗ g)(x), is defined by

(f ∗ g)(x) = 1√
2π

∞∫

−∞
f(x− ξ)g(ξ)dξ, (2.5.10)
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provided the integral in (2.5.10) exists, where the factor 1√
2π

is a matter of

choice. In the study of convolution, this factor is often omitted as this factor
does not affect the properties of convolution. We will include or exclude the
factor 1√

2π
freely in this book.

We give some examples of convolution.

Example 2.5.1 Find the convolution of
(a) f(x) = cosx and g(x) = exp(−a|x|), a > 0,
(b) f(x) =χ[a,b](x) and g(x) = x2,

where χ[a,b](x) is the characteristic function of the interval [a, b]⊆R defined
by

χ[a,b](x) =

{
1, a≤ x≤ b

0, otherwise

}
.

(a) We have, by definition,

(f ∗ g)(x) =
∞∫

−∞
f(x− ξ) g(ξ)dξ =

∞∫

−∞
cos(x− ξ) e−a|ξ|dξ

=

0∫

−∞
cos(x− ξ) eaξdξ +

∞∫

0

cos(x− ξ) e−aξdξ

=

∞∫

0

cos(x+ ξ) e−aξdξ +

∞∫

0

cos(x− ξ) e−aξdξ

= 2 cosx

∞∫

0

cos ξ e−aξdξ =
2a cosx

(1 + a2)
.

If a=1, then f ∗ g)(x) = f(x) so that g becomes an identity element of con-
volution. The question is whether it is true for all g(x).

(b) We have

(f ∗ g)(x) =
∞∫

−∞
f(x− ξ) g(ξ)dξ=

∞∫

−∞
χ[a,b](x− ξ) g(ξ)dξ

=

∞∫

−∞
χ[a,b](ξ) g(x− ξ)dξ =

∫ b

a

g(x− ξ) dξ=

∫ b

a

(x− ξ)2 dξ

=
1

3

{
(x− a)3 − (x− b)3

}
.



Fourier Transforms and Their Applications 41

THEOREM 2.5.5 (Convolution Theorem).
If F{f(x)}=F (k) and F{g(x)}=G(k), then

F{f(x) ∗ g(x)}=F (k)G(k), (2.5.11)

or,
f(x) ∗ g(x) =F−1{F (k)G(k)}, (2.5.12)

or, equivalently,

∞∫

−∞
f(x− ξ)g(ξ)dξ=

∞∫

−∞
eikxF (k)G(k)dk. (2.5.13)

PROOF We have, by the definition of the Fourier transform,

F{f(x) ∗ g(x)} =
1

2π

∞∫

−∞
e−ikxdx

∞∫

−∞
f(x− ξ)g(ξ)dξ

=
1

2π

∞∫

−∞
e−ikξg(ξ)dξ

∞∫

−∞
e−ik(x−ξ)f(x− ξ)dx

=
1

2π

∞∫

−∞
e−ikξg(ξ)dξ

∞∫

−∞
e−ikηf(η)dη=G(k)F (k),

where, in this proof, the factor 1√
2π

is included in the definition of the con-

volution and all necessary interchanges of the order of integration are valid.
This completes the proof.

The convolution has the following algebraic properties:

f ∗ g= g ∗ f (Commutative), (2.5.14)

f ∗ (g ∗ h) = (f ∗ g) ∗ h (Associative), (2.5.15)

(αf + βg) ∗ h=α (f ∗ h) + β (g ∗ h) (Distributive), (2.5.16)

f ∗
√
2πδ= f =

√
2πδ ∗ f (Identity), (2.5.17)

where α and β are constants.
We give proofs of (2.5.15) and (2.5.16). If f ∗ (g ∗ h) exists, then

[f ∗ (g ∗ h)] (x) =
∞∫

−∞
f(x− ξ)(g ∗ h)(ξ)dξ

=

∞∫

−∞
f(x− ξ)

∞∫

−∞
g(ξ − t)h(t) dt dξ
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=

∞∫

−∞

⎡
⎣

∞∫

−∞
f(x− ξ) g(ξ − t)dξ

⎤
⎦ h(t)dt

=

∞∫

−∞

⎡
⎣

∞∫

−∞
f(x− t− η) g(η)dη

⎤
⎦ h(t)dt (put ξ − t= η)

=

∞∫

−∞
[(f ∗ g) (x− t)]h(t)dt

= [(f ∗ g) ∗ h] (x),
where, in the above proof, under suitable assumptions, the interchange of the
order of integration can be justified.
Similarly, we prove (2.5.16) using the right-hand side of (2.5.16), that is,

α (f ∗ h) + β (g ∗ h) = α

∞∫

−∞
f(x− ξ)h(ξ)dξ + β

∞∫

−∞
g(x− ξ)h(ξ)dξ

=

∞∫

−∞
[αf(x− ξ) + βg(x− ξ)] h(ξ)dξ

= [(αf + βg) ∗ h] (x).
Another proof of the associative property of the convolution is given below.

We apply the Fourier transform to the left-hand side of (2.5.15) and then
use the convolution theorem (2.5.5) so that

F {f ∗ (g ∗ h)} = F {f}F {(g ∗ h)}
= F (k) [F {g}F {h}]
= F (k) [G(k)H(k)]

= [F (k)G(k)]H(k)

= F {(f ∗ g)}F {h}
= F {(f ∗ g) ∗ h} .

Applying the F−1 on both sides, we obtain

f ∗ (g ∗ h) = (f ∗ g) ∗ h.
Similarly, all properties (2.5.14)–(2.5.17) of convolution can easily be proved
using the convolution theorem 2.5.5.

In view of the commutative property (2.5.14) of the convolution, (2.5.13)
can be written as

∞∫

−∞
f(ξ)g(x− ξ)dξ=

∞∫

−∞
eikxF (k)G(k)dk. (2.5.18)
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This is valid for all real x, and hence, putting x=0 gives

∞∫

−∞
f(ξ)g(−ξ)dξ=

∞∫

−∞
f(x)g(−x)dx=

∞∫

−∞
F (k)G(k)dk. (2.5.19)

We substitute g(x) = f(−x) to obtain

G(k) =F{g(x)}=F
{
f(−x)

}
=F{f(x)}=F (k).

Evidently, (2.5.19) becomes

∞∫

−∞
f(x) f(x)dx=

∞∫

−∞
F (k) F (k)dk (2.5.20)

or,
∞∫

−∞
|f(x)|2dx=

∞∫

−∞
|F (k)|2dk. (2.5.21)

This is well known as Parseval’s relation.
For square integrable functions f(x) and g(x), the inner product 〈f, g〉 is

defined by

〈f, g〉=
∞∫

−∞
f(x) g(x)dx (2.5.22)

so the norm ‖f‖2 is defined by

‖f‖22 = 〈f, f〉=
∞∫

−∞
f(x) f(x)dx=

∞∫

−∞
|f(x)|2dx. (2.5.23)

The function space L2(R) of all complex-valued Lebesgue square integrable
functions with the inner product defined by (2.5.22) is a complete normed
space with the norm (2.5.23). In terms of the norm, the Parseval relation
takes the form

‖f‖2 = ‖F‖2 = ‖Ff‖2. (2.5.24)

This means that the Fourier transform action is unitary. Physically, the quan-
tity ‖f‖2 is a measure of energy and ‖F‖2 represents the power spectrum of
f .

THEOREM 2.5.6 (General Parseval’s Relation).
If F{f(x)}=F (k) and F{g(x)}=G(k) then

∞∫

−∞
f(x) g(x)dx=

∞∫

−∞
F (k)G(k)dk. (2.5.25)
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PROOF We proceed formally to obtain

∞∫

−∞
F (k)G(k)dk =

∞∫

−∞
dk · 1

2π

∞∫

−∞
e−ikyf(y) dy

∞∫

−∞
e−ikxg(x) dx

=
1

2π

∞∫

−∞
f(y) dy

∞∫

−∞
g(x)dx

∞∫

−∞
eik(x−y)dk

=

∞∫

−∞
g(x) dx

∞∫

−∞
δ(x− y)f(y) dy=

∞∫

−∞
f(x)g(x) dx.

In particular, when g(x) = f(x), the above result agrees with (2.5.20).

Second Proof of (2.5.25).

Using the inverse Fourier transform, we have

f(x)g(x) =
1√
2π

∞∫

−∞
eikxF (k)dk

1√
2π

∞∫

−∞
e−iξxG(ξ) dξ

=

∞∫

−∞
F (k)dk

1

2π

∞∫

−∞
ei(k−ξ)xG(ξ) dξ.

Thus,

∞∫

−∞
f(x)g(x)dx =

∞∫

−∞
F (k)dk

∞∫

−∞
δ(k − ξ)G(ξ) dξ

=

∞∫

−∞
F (k)G(k) dk.

We now use an indirect method to obtain the Fourier transform of sgn(x),
that is,

F{sgn(x)}=
√

2

π

1

ik
. (2.5.26)

From (2.4.26), we find

F

{
d

dx
sgn(x)

}
=F{2H ′(x)}=2F{δ(x)}=

√
2

π
,

which is, by (2.5.8),

ik F{sgn(x)}=
√

2

π
,



Fourier Transforms and Their Applications 45

or

F{sgn(x)}=
√

2

π
· 1

ik
.

The Fourier transform of H(x) follows from (2.4.30) and (2.5.26):

F{H(x)} =
1

2
F{1 + sgn(x)}= 1

2
[F{1}+F{sgn(x)}]

=

√
π

2

[
δ(k) +

1

iπk

]
. (2.5.27)

2.6 Poisson’s Summation Formula

A class of functions designated as Lp(R) is of great importance in the theory
of Fourier transformations, where p(≥ 1) is any real number. We denote the
vector space of all complex-valued functions f(x) of the real variable x. If f
is a locally integrable function such that |f |p ∈L(R), then we say f is p-th
power Lebesgue integrable. The set of all such functions is written Lp(R). The
number ||f ||p is called the Lp-norm of f and is defined by

||f ||p =

[∫ ∞

−∞
|f(x)|p dx

] 1
p

<∞. (2.6.1)

Suppose f is a Lebesgue integrable function on R. Since exp(−ikx) is contin-
uous and bounded, the product exp(−ikx) f(x) is locally integrable for any
k ∈R. Also, | exp(−ikx)| ≤ 1 for all k and x on R. Consider the inner product

〈
f, eikx

〉
=

∫ ∞

−∞
f(x) e−ikx dx, k ∈R. (2.6.2)

Clearly,

∣∣∣∣
∫ ∞

−∞
f(x) e−ikx dx

∣∣∣∣≤
∫ ∞

−∞
|f(x)| dx= ||f ||1<∞. (2.6.3)

This means that integral (2.6.2) exists for all k ∈R, and was used to define
the Fourier transform, F (k) =F{f(x)} without the factor 1√

2π
.

Although the theory of Fourier series is a very important subject, a detailed
study is beyond the scope of this book. Without rigorous analysis, we can
establish a simple relation between the Fourier transform of functions in L1(R)
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and the Fourier series of related periodic functions in L1(−a, a) of period 2a.
If f(x)∈L1(−a, a) and is defined by

f(x) =

∞∑
n=−∞

cne
inx , (−a≤ x≤ a), (2.6.4)

where the Fourier coefficients cn is given by

cn =
1

2a

∫ a

−a
f(x) e−ikx dx. (2.6.5)

THEOREM 2.6.1 If f(x)∈L1(R), then the series

∞∑
n=−∞

f(x+ 2na) (2.6.6)

converges absolutely for almost all x in (−a, a) and its sum g(x)∈L1(−a, a)
with g(x+ 2a) = g(x) for x∈R.

If an denotes the Fourier coefficient of a function g, then

an =
1

2a

∫ a

−a
g(x) e−inx dx=

1

2a

∫ ∞

−∞
f(x) e−inx dx=

1

2a
F (n).

PROOF We have

∞∑
n=−∞

∫ a

−a
|f(x+ 2na)| dx = lim

N→∞

N∑
n=−N

∫ a

−a
|f(x+ 2na)| dx

= lim
N→∞

N∑
n=−N

∫ (2n+1)a

(2n−1)a

|f(t)| dt

= lim
N→∞

∫ (2N+1)a

−(2N+1)a

|f(t)| dt

=

∫ ∞

−∞
|f(t)| dt< ∞.

It follows from Lebesgue’s theorem on monotone convergence that

∫ a

−a

[ ∞∑
n=−∞

|f(x+ 2na)|
]
dx =

∞∑
n=−∞

∫ a

−a
|f(x+ 2na)| dx< ∞.

Hence, the series
∑∞
n=−∞ f(x+ 2na) converges absolutely for almost all x

in (−a, a). If gN (x) =
∑N

n=−N f(x+ 2na), limN→∞ gN (x) = g(x), where g ∈
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L
1(−a, a), and g(x+ 2a)= g(x).

Moreover,

||g||1 =

∫ a

−a
|g(x)| dx=

∫ a

−a

∣∣∣∣∣
∞∑

n=−∞
f(x+ 2na)

∣∣∣∣∣ dx

≤
∫ a

−a

∞∑
n=−∞

|f(x+ 2na)| dx

=

∞∑
n=−∞

∫ a

−a
|f(x+ 2na)| dx

=

∫ ∞

−∞
|f(x)| dx= ||f ||1.

We consider the Fourier series of g(x) given by

g(x) =

∞∑
m=−∞

cm exp(imπx/a), (2.6.7)

where the coefficients cm for m=0,±1,±2, ... are given by

cm=
1

2a

a∫

−a
g(x)exp(−imπx/a)dx. (2.6.8)

We replace g(x) by the limit of the sum

g(x) = lim
N→∞

N∑
n=−N

f(x+ 2na), (2.6.9)

so that (2.6.8) reduces to

cm =
1

2a
lim
N→∞

N∑
n=−N

a∫

−a
f(x+ 2na)exp(−imπx/a) dx

=
1

2a
lim
N→∞

N∑
n=−N

(2n+1)a∫

(2n−1)a

f(y)exp(−imπy/a) dy

=
1

2a
lim
N→∞

(2N+1)a∫

−(2N+1)a

f(x)exp(−imπx/a) dx

=

√
2π

2a
F
(mπ
a

)
, (2.6.10)
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where F
(
mπ
a

)
is the discrete Fourier transform of f(x).

Evidently,

∞∑
n=−∞

f(x+ 2na) = g(x) =
∞∑

n=−∞

√
2π

2a
F
(nπ
a

)
exp(inπx/a). (2.6.11)

We let x=0 in (2.6.11) to obtain the Poisson summation formula

∞∑
n=−∞

f(2na)=

∞∑
n=−∞

√
2π

2a
F
(nπ
a

)
. (2.6.12)

When a= π, this formula becomes an elegant form

∞∑
n=−∞

f(2πn) =
1√
2π

∞∑
n=−∞

F (n). (2.6.13)

When 2a=1, formula (2.6.12) becomes

∞∑
n=−∞

f(n) =
√
2π

∞∑
n=−∞

F (2nπ). (2.6.14)

To obtain a more general formula, we assume that a is a given positive
constant, and write g(x) = f(ax) for all x. Then

f

(
a.
2πn

a

)
= g

(
2πn

a

)
,

and we define the Fourier transform of f(x) without the factor 1√
2π

so that

F (n) =

∫ ∞

−∞
e−inx f(x) dx=

∫ ∞

−∞
e−inx f

(
a.
x

a

)
dx

=

∫ ∞

−∞
e−inx g

(x
a

)
dx

= a

∫ ∞

−∞
e−i(an)y g(y) dy

= aG(an).

Consequently, equality (2.6.13) reduces to

∞∑
n=−∞

g(
2πn

a
) =

a√
2π

∞∑
n=−∞

G(an). (2.6.15)

Putting b= 2π
a in (2.6.15) gives

∞∑
n=−∞

g(bn)=
√
2π b−1

∞∑
n=−∞

G(2πb−1n). (2.6.16)
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When b=2π, result (2.6.16) becomes (2.6.13). We apply these formulas to
prove the following series

(a)

∞∑
n=−∞

1

(n2 + b2)
=
π

b
coth(πb), (2.6.17)

(b)

∞∑
n=−∞

exp(−πn2t) =
1√
t

∞∑
n=−∞

exp

(
−πn

2

t

)
, (2.6.18)

(c)

∞∑
n=−∞

1

(x+ nπ)2
= cosec2(x). (2.6.19)

To prove (a), we write f(x) = (x2 + b2)−1 so that F (k) =
√

π
2

1
b exp(−b|k|).

We now use (2.6.14) to derive

∞∑
n=−∞

1

(n2 + b2)
=
π

b

∞∑
n=−∞

exp(−2|n|πb)

=
π

b

[ ∞∑
n=0

exp(−2nπb) +

∞∑
n=1

exp(2nπb)

]

which is, by writing r= exp(−2πb),

=
π

b

[ ∞∑
n=0

rn +

∞∑
n=1

(
1

r

)n]
=
π

b

(
r

1− r
+

1

1− r

)

=
π

b

(
1 + r

1− r

)
=
π

b
coth(πb).

It follows from (2.6.14) that

∞∑
n=−∞

1

(n2 + b2)
=
π

b

(
1 + e−2πb

)
(1− e−2πb)

.

Or,

2

∞∑
n=1

1

(n2 + b2)
+

1

b2
=
π

b

(
1 + e−2πb

)
(1− e−2πb)

.
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It turns out that

∞∑
n=1

1

(n2 + b2)
=

π

2b

[(
1 + e−2πb

)
(1− e−2πb)

− 1

πb

]

=
π2

x

[
(1 + e−x)
(1− e−x)

− 2

x

]
, (2πb= x)

=
π2

x2

[
x (1 + e−x)− 2 (1− e−x)

(1− e−x)

]

=
(π
x

)2
[
x3

(
1
2 − 1

3

)− x4

12 + ....

x− x2

2! +
x3

3! − ....

]
.

In the limit as b→ 0 (x→ 0), we obtain the well-known Euler’s result

∞∑
n=1

1

n2
=
π2

6
. (2.6.20)

To prove (b), we assume f(x) = exp(−πtx2) so that F (k) = 1√
2πt

exp
(
− k2

4πt

)
.

Thus, the Poisson formula (2.6.14) gives

∞∑
n=−∞

exp(−πtn2) =
1√
t

∞∑
n=−∞

exp(−πn2/t).

This identity plays an important role in number theory and in the theory of
elliptic functions. The Jacobi theta function Θ(s) is defined by

Θ(s) =
∞∑

n=−∞
exp(−πsn2), s> 0, (2.6.21)

so that (2.6.16) gives the functional equation for the theta function

√
sΘ(s) =Θ

(
1

s

)
. (2.6.22)

The theta function Θ(s) also extends to complex values of s when Re(s)> 0
and the functional equation is still valid for complex s. The theta function is
closely related to the Riemann zeta function ζ(s) defined for Re(s)> 1 by

ζ(s) =

∞∑
n=1

1

ns
. (2.6.23)

An integral representation of ζ(s) can be found from the result

∫ ∞

0

xs−1 e−nxdx=
Γ(s)

ns
, Re(s)> 0,
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where the gamma function Γ(s) is defined by

Γ(s) =

∫ ∞

0

e−tts−1dt, Re(s)> 0.

Summing both sides of this result and interchanging the order of summation
and integration, which is permissible for Re(s)> 1, gives

Γ(s) ζ(s) =

∫ ∞

0

xs−1 dx

ex − 1
, Re(s)> 1. (2.6.24)

It turns out that ζ(s), Θ(s), and Γ(s) are related by the following identity:

ζ(s)Γ(s/2)=
1

2
πs/2

∫ ∞

0

xs/2−1 [Θ(x)− 1] dx, Re(s)> 1. (2.6.25)

Considering the complex integral in a suitable closed contour C

I =
1

2πi

∫
C

zs−1

e−z − 1
dz,

and using the Cauchy residue theorem with all zeros of (e−z − 1) at z=2πin,
n=±1,±2, ...,±N gives

I =−2 sin
(πs
2

) ∞∑
n=1

(2πn)s−1 .

To prove (c), we use the Fourier transform of the function f(x) = (1− |x|)
H (1− |x|) to obtain the result. In the limit as N→∞, the sum of the residues
is convergent so that the integral gives the relation

2sπs−1 sin
(πs

2

)
ζ(1− s) =

ζ(s)

Γ(1− s)
. (2.6.26)

In view of another relation for the gamma function, Γ(1 + z)Γ(−z)=− π
sinπz ,

the relation (2.6.26) leads to a famous functional relation for ζ(s) in the form

πsζ(1− s) = 21−sΓ(s) cos
(πs
2

)
ζ(s). (2.6.27)

2.7 The Shannon Sampling Theorem

An analog signal f(t) is a continuous function of time t defined in −∞< t<∞,
with the exception of perhaps a countable number of jump discontinuities.
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Almost all analog signals f(t) of interest in engineering have finite energy. By
this we mean that f ∈ L2(−∞, ∞). The norm of f defined by

||f || =
[∫ ∞

−∞
|f(t)|2 dt

] 1
2

(2.7.1)

represents the square root of the total energy content of the signal f(t). The
spectrum of a signal f(t) is represented by its Fourier transform F (ω), where
ω is called the frequency. The frequency is measured by ν = ω

2π in terms of
Hertz.

A continuous signal fa(t) is called band limited if its Fourier transform F (ω)
is zero except in a finite interval −a≤ t≤ a, that is, if

Fa(ω) = 0 for |ω|>a. (2.7.2)

Then a(> 0) is called the cutoff frequency.

In particular, if

F (ω) =

{
1, |ω| ≤ a
0, |ω|>a

}
(2.7.3)

then F (ω) is called a gate function and is denoted by Fa(ω), and the band
limited signal is denoted by fa(t). If a is the smallest value for which (2.7.2)
holds, it is called the bandwidth of the signal. Even if an analog signal f(t) is
not band-limited, we can reduce it to a band-limited signal by what is called
an ideal low-pass filtering. To reduce f(t) to a band-limited signal fa(t) with
bandwidth less than or equal to a, we consider

Fa(ω) =

{
F (ω), |ω| ≤ a
0, |ω|>a

}
(2.7.4)

and find the low-pass filter function fa(t) by the inverse Fourier transform

fa(t) =
1

2π

∫ ∞

−∞
eiωtFa(ω)dω=

1

2π

∫ a

−a
eiωtFa(ω)dω. (2.7.5)

This function fa(t) is called the Shannon sampling function. When a= π,
fπ(t) is called the Shannon scaling function. The band-limited signal fa(t) is
given by

fa(t) =
1

2π

∞∫

−∞
F (ω)eiωtdω=

1

2π

a∫

−a
eiωtdω=

sin at

πt
. (2.7.6)

Both F (ω) and fa(t) are shown in Figure 2.6 for a=2.
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Figure 2.6 The gate function and its inverse Fourier transform.

Consider the limit as a→∞ of the Fourier integral for −∞<ω<∞

1 = lim
a→∞

∞∫

−∞
e−iωtfa(t)dt= lim

a→∞

∞∫

−∞
e−iωt

sin at

πt
dt

=

∞∫

−∞
e−iωt

[
lim
a→∞

sin at

πt

]
dt=

∞∫

−∞
e−iωtδ(t)dt.

Clearly, the delta function δ(t) can be thought of as the limit of the sequence
of functions fa(t). More precisely,

δ(t) = lim
a→∞

(
sin at

πt

)
. (2.7.7)

We next consider the band-limited signal

fa(t) =
1

2π

a∫

−a
F (ω)eiωtdω=

1

2π

∞∫

−∞
F (ω)Fa(ω) e

iωtdω,

which is, by the Convolution Theorem,

fa(t) =

∞∫

−∞
f(τ)fa(t− τ)dτ =

∞∫

−∞

sin a(t− τ)

π(t− τ)
f(τ)dτ. (2.7.8)

This integral represents the sampling integral representation of the band-
limited signal fa(t).
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Example 2.7.1 (Synthesis and Resolution of a Signal; Physical Interpreta-
tion of Convolution).
In electrical engineering problems, a time-dependent electric, optical or elec-
tromagnetic pulse is usually called a signal. Such a signal can be considered
as a superposition of plane waves of all real frequencies so that it can be
represented by the inverse Fourier transform

f(t) =F−1{F (ω)}= 1

2π

∞∫

−∞
F (ω)eiωtdω, (2.7.9)

where F (ω) =F{f(t)}, the factor (1/2π) is introduced because the angular
frequency ω is related to linear frequency ν by ω=2πν, and negative fre-
quencies are introduced for mathematical convenience so that we can avoid
dealing with the cosine and sine functions separately. Clearly, F (ω) can be
represented by the Fourier transform of the signal f(t) as

F (ω) =

∞∫

−∞
f(t)e−iωtdt. (2.7.10)

This represents the resolution of the signal into its angular frequency compo-
nents, and (2.7.9) gives a synthesis of the signal from its individual compo-
nents.

Consider a simple electrical device such as an amplifier with an input signal
f(t), and an output signal g(t). For an input of a single frequency ω, f(t) =
eiωt. The amplifer will change the amplitude and may also change the phase
so that the output can be expressed in terms of the input, the amplitude and
the phase modifying function Φ(ω) as

g(t) =Φ(ω)f(t), (2.7.11)

where Φ(ω) is usually known as the transfer function and is, in general, a
complex function of the real variable ω. This function is generally independent
of the presence or absence of any other frequency components. Thus, the total
output may be found by integrating over the entire input as modified by the
amplifier

g(t)=
1

2π

∞∫

−∞
Φ(ω)F (ω) eiωtdω. (2.7.12)

Thus, the total output signal can readily be calculated from any given input
signal f(t). On the other hand, the transfer function Φ(ω) is obviously charac-
teristic of the amplifier device and can, in general, be obtained as the Fourier
transform of some function φ(t) so that

Φ(ω) =

∞∫

−∞
φ(t)e−iωtdt. (2.7.13)
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The Convolution Theorem 2.5.5 allows us to rewrite (2.7.12) as

g(t) =F−1{Φ(ω)F (ω)}= f(t) ∗ φ(t) =
∞∫

−∞
f(τ)φ(t− τ)dτ. (2.7.14)

Physically, this result represents an output signal g(t) as the integral superpo-
sition of an input signal f(t) modified by φ(t− τ). Linear translation invariant
systems, such as sensors and filters, are modeled by the convolution equations
g(t) = f(t) ∗ φ(t), where φ(t) is the system impulse response function. In fact
(2.7.14) is the most general mathematical representation of an output (effect)
function in terms of an input (cause) function modified by the amplifier where
t is the time variable. Assuming the principle of causality, that is, every effect
has a cause, we must require τ < t. The principle of causality is imposed by
requiring

φ(t− τ) = 0 when τ > t. (2.7.15)

Consequently, (2.7.14) gives

g(t) =

t∫

−∞
f(τ)φ(t− τ)dτ. (2.7.16)

In order to determine the significance of φ(t), we use an impulse function
f(τ) = δ(τ) so that (2.7.16) becomes

g(t) =

t∫

−∞
δ(τ)φ(t− τ)dτ = φ(t)H(t). (2.7.17)

This recognizes φ(t) as the output corresponding to a unit impulse at t=0,
and the Fourier transform of φ(t) is

Φ(ω) =F{φ(t)}=
∞∫

0

φ(t)e−iωtdt, (2.7.18)

with φ(t) = 0 for t< 0.

Example 2.7.2 (The Series Sampling Expansion of a Band-Limited Signal).
Consider a band-limited signal fa(t) with Fourier transform F (ω)= 0 for |ω|>
a. We write the Fourier series expansion of F (ω) on the interval −a<ω <a
in terms of the orthogonal set of functions

{
exp

(− inπω
a

)}
in the form

F (ω) =
∞∑

n=−∞
an exp

(
− inπ

a
ω

)
, (2.7.19)
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where the Fourier coefficients an are given by

an=
1

2a

a∫

−a
F (ω)exp

(
inπ

a
ω

)
dω=

1

2a
fa

(nπ
a

)
. (2.7.20)

Thus, the Fourier series expansion (2.7.19) becomes

F (ω) =
1

2a

∞∑
n=−∞

fa

(nπ
a

)
exp

(
− inπ

a
ω

)
. (2.7.21)

The signal function fa(t) is obtained by multiplying (2.7.21) by eiωt and in-
tegrating over (−a, a) so that

fa(t) =

a∫

−a
F (ω)eiωtdω

=
1

2a

a∫

−a
eiωtdω

[ ∞∑
n=−∞

fa

(nπ
a

)
exp

(
− inπ

a
ω

)]

=
1

2a

∞∑
n=−∞

fa

(nπ
a

) a∫

−a
exp

[
iω

(
t− nπ

a

)]
dω

=

∞∑
n=−∞

fa

(nπ
a

) sin a
(
t− nπ

a

)
a
(
t− nπ

a

)

=

∞∑
n=−∞

fa

(nπ
a

) sin (at− nπ)

(at− nπ)
. (2.7.22)

This result is the main content of the sampling theorem. It simply states that
a band-limited signal fa(t) can be reconstructed from the infinite set of dis-
crete samples of fa(t) at t=0, ±π

a , .... . In practice, a discrete set of samples
is useful in the sense that most systems receive discrete samples {f(tn)} as
an input. The sampling theorem can be realized physically. Modern telephone
equipment employs sampling to send messages over wires. In fact, it seems
that sampling is audible on some transoceanic cable calls.

Result (2.7.22) can be obtained from the convolution theorem by using
discrete input samples

∞∑
n=−∞

π

a
fa

(nπ
a

)
δ
(
t− nπ

a

)
= f(t). (2.7.23)
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Hence, the sampling expansion (2.7.8) gives the band-limited signal

fa(t) =

∞∫

−∞

sin a(t− τ)

π(t− τ)

[ ∞∑
n=−∞

π

a
fa

(nπ
a

)
δ
(
τ − nπ

a

)]
dτ

=

∞∑
n=−∞

fa

(nπ
a

) ∞∫

−∞

sin a(t− τ)

a(t− τ)
δ
(
τ − nπ

a

)
dτ

=
∞∑

n=−∞
fa

(nπ
a

) sin a
(
t− nπ

a

)
a
(
t− nπ

a

) . (2.7.24)

In general, the output can be best described by taking the Fourier transform
of (2.7.14) so that

G(ω) =F (ω)Φ(ω), (2.7.25)

where Φ(ω) is called the transfer function of the system. Thus, the output can
be calculated from (2.7.25) by the Fourier inversion formula

g(t) =
1

2π

∫ ∞

−∞
F (ω)Φ(ω) eiωt dω. (2.7.26)

Obviously, the transfer function Φ(ω) is a characteristic of a linear system.
A linear system is a filter if it possesses signals of certain frequencies and
attenuates others. If the transfer function

Φ(ω) = 0 |ω| ≥ω0, (2.7.27)

then φ(t), the Fourier inverse of Φ(ω), is called a low-pass filter.

On the other hand, if the transfer function

Φ(ω) = 0 |ω| ≤ω1, (2.7.28)

then φ(t) is a high-pass filter. A band-pass filter possesses a band ω0 ≤ |ω| ≤ω1.
It is often convenient to express the system transfer function Φ(ω) in the
complex form

Φ(ω) =A(ω) exp[−iθ(ω)], (2.7.29)

where A(ω) is called the amplitude and θ(ω) is called the phase of the transfer
function. Obviously, the system impulse response φ(t) is given by the inverse
Fourier transform

φ(t) =
1

2π

∫ ∞

−∞
A(ω) exp[i{ωt− θ(ω)}] dω. (2.7.30)
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For a unit step function as the input f(t) =H(t), we have

F (ω) = Ĥ(ω) =

(
πδ(ω) +

1

iω

)
,

where Ĥ(ω) =F {H(t)} and the associated output g(t) is then given by

g(t) =
1

2π

∫ ∞

−∞
Φ(ω)Ĥ(ω)eiωt dω

=
1

2π

∫ ∞

−∞

(
πδ(ω) +

1

iω

)
A(ω) exp[i{ωt− θ(ω)}] dω

=
1

2
A(0) +

1

2π

∫ ∞

−∞

A(ω)

ω
exp

[
i
{
ωt− θ(ω)− π

2

}]
dω . (2.7.31)

We next give another characterization of a filter in terms of the amplitude
of the transfer function.

A filter is called distortionless if its output g(t) to an arbitrary input f(t)
has the same form as the input, that is,

g(t) =A0f(t− t0). (2.7.32)

Evidently,
G(ω) =A0e

−iωt0 F (ω) =Φ(ω)F (ω)

where
Φ(ω) =A0e

−iωt0

represents the transfer function of the distortionless filter. It has a constant
amplitude A0 and a linear phase shift θ(ω) =ωt0.

However, in general, the amplitude A(ω) of a transfer function is not con-
stant, and the phase θ(ω) is not a linear function.

A filter with constant amplitude, |θ(ω)|=A0 is called an all-pass filter. It
follows from Parseval’s formula that the energy of the output of such a filter
is proportional to the energy of its input.

A filter whose amplitude is constant for |ω|<ω0 and zero for |ω|>ω0 is
called an ideal low-pass filter. More explicitly, the amplitude is given by

A(ω) =A0Ĥ(ω0 − |ω|) =A0χ̂ω0(ω) , (2.7.33)

where χ̂ω0(ω) is a rectangular pulse. So, the transfer function of the low-pass
filter is

Φ(ω) =A0χ̂ω0(ω) exp(−iωt0) . (2.7.34)

Finally, the ideal high-pass filter is characterized by its amplitude given by

A(ω) =A0Ĥ(|ω| − ω0) =A0χ̂ω0(ω) , (2.7.35)
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where A0 is a constant. Its transfer function is given by

Φ(ω) =A0 [1− χ̂ω0(ω)] exp(−iωt0) . (2.7.36)

Example 2.7.3 (Bandwidth and Bandwidth Equation).
The Fourier spectrum of a signal (or waveform) gives an indication of the
frequencies that exist during the total duration of the signal (or waveform).
From the knowledge of the frequencies that are present, we can calculate the
average frequency and the spread about that average. In particular, if the
signal is represented by f(t), we can define its Fourier spectrum by

F (ν) =

∫ ∞

−∞
e−2πiνt f(t) dt. (2.7.37)

Using |F (ν)|2 for the density in frequency, the average frequency is denoted
by <ν > and defined by

<ν >=

∫ ∞

−∞
ν |F (ν)|2 dν. (2.7.38)

The bandwidth is then the root mean square (RMS) deviation at about the
average, that is,

B2 =

∫ ∞

−∞
(ν−<ν >)2 dν. (2.7.39)

Expressing the signal in terms of its amplitude and phase

f(t) = a(t) exp{iθt}, (2.7.40)

the instantaneous frequency, ν(t) is the frequency at a particular time defined
by

ν(t) =
1

2π
θ′(t). (2.7.41)

Substituting (2.7.37) and (2.7.40) into (2.7.38) gives

<ν >=
1

2π

∫ ∞

−∞
θ′(t) a2(t) dt=

∫ ∞

−∞
ν(t) a2(t) dt. (2.7.42)

This formula states that the average frequency is the average value of the in-
stantaneous frequency weighted by the square of the amplitude of the signal.

We next derive the bandwidth equation in terms of the amplitude and phase
of the signal in the form

B2 =
1

(2π)2

∫ ∞

−∞

[
a′(t)
a(t)

]2
a2(t) dt+

∫ ∞

−∞

[
1

2π
θ′(t)−<ν >

]2
a2(t) dt.

(2.7.43)
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A straightforward but lengthy way to derive it is to substitute (2.7.40) into
(2.7.39) and simplify. However, we give an elegant derivation of (2.7.43) by
representing the frequency by the operator

ν =
1

2πi

d

dt
. (2.7.44)

We calculate the average by sandwiching the operator between the complex
conjugate of the signal and the signal. Thus,

<ν > =

∫ ∞

−∞
ν |F (ν)|2 dν =

∫ ∞

−∞
f̄(t)

[
1

2πi

d

dt

]
f(t) dt

=
1

2π

∫ ∞

−∞
a(t) {−ia′(t) + a(t)θ′(t)} dt

=
1

2π

∫ ∞

−∞
−1

2
i

[
d

dt
a2(t)

]
dt+

1

2π

∫ ∞

−∞
a2(t)θ′(t) dt (2.7.45)

=
1

2π

∫ ∞

−∞
θ′(t)a2(t) dt (2.7.46)

provided the first integral in (2.7.44) vanishes if a(t)→ 0 as |t|→∞.

It follows from the definition (2.7.39) of the bandwidth that

B2 =

∫ ∞

−∞
(ν−<ν >)

2 |F (ν)|2 dν

=

∫ ∞

−∞
f̄(t)

[
1

2πi

d

dt
−<ν >

]2
f(t) dt

=

∫ ∞

−∞

∣∣∣∣
[

1

2πi

d

dt
−<ν >

]
f(t)

∣∣∣∣
2

dt

=

∫ ∞

−∞

∣∣∣∣ 1

2πi

a′(t)
a(t)

+
1

2π
θ′(t)−<ν >

∣∣∣∣
2

a2(t) dt

=
1

4π2

∫ ∞

−∞

[
a′(t)
a(t)

]2
a2(t) dt+

∫ ∞

−∞

[
1

2π
θ′(t)−<ν >

]2
a2(t) dt.

This completes the derivation.

Physically, the second term in equation (2.7.43) gives averages of all of the
deviations of the instantaneous frequency from the average frequency. In elec-
trical engineering literature, the spread of frequency about the instantaneous
frequency, which is defined as an average of the frequencies that exist at a
particular time, is called instantaneous bandwidth, given by

σ2
ν/t=

1

(2π)2

[
a′(t)
a(t)

]2
. (2.7.47)
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In the case of a chirp with a Gaussian envelope

f(t)=
(α
π

) 1
4

exp

[
−1

2
αt2 +

1

2
iβαt2 + 2πiν0t

]
, (2.7.48)

where its Fourier spectrum is given by

F (ν) = (απ)
1
4

(
1

α− iβ

) 1
2

exp
[−2π2(ν − ν0)

2/(α− iβ)
]
. (2.7.49)

The energy density spectrum of the signal is

|F (ν)|2 =2

(
απ

α2 + β2

) 1
2

exp

[
−4απ2(ν − ν0)

2

α2 + β2

]
. (2.7.50)

Finally, the average frequency <ν > and the bandwidth square are respec-
tively given by

<ν >= ν0 and B2 =
1

8π2

(
α+

β2

α

)
. (2.7.51)

A large bandwidth can be achieved in two very qualitatively different ways.
The amplitude modulation can be made large by taking α large, and the
frequency modulation can be small by letting β→ 0. It is possible to make
the frequency modulation large by making β large and α very small. These
two extreme situations are physically very different even though they produce
the same bandwidth.

Example 2.7.4 Find the transfer function and the corresponding impulse
response function of the RLC circuit governed by the differential equation

L
d2q

dt2
+R

dq

dt
+

1

C
q = e (t) (2.7.52)

where q (t) is the charge, R, L, C are constants, and e (t) is the given voltage
(input).

Equation (2.7.25) provides the definition of the transfer function in the
frequency domain

Φ (ω) =
G (ω)

F (ω)
=

F {g (t)}
F {f (t)} , (2.7.53)

where φ (t) =F−1 {Φ (ω)} is called the impulse response function.
Taking the Fourier transform of (2.7.52) gives

(
−Lω2 +Riω +

1

C

)
Q (ω) = E (ω) . (2.7.54)
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Thus, the transfer function is

Φ (ω) =
Q (ω)

E (ω)
=

−C
LCω2 − iRCω − 1

=
i

2Lβ

[
1

ω− i (α+ β)
− 1

ω − i (α− β)

]
, (2.7.55)

where

α=
R

2L
and β =

[(
R

2L

)2

− 1

LC

] 1
2

. (2.7.56)

The inverse Fourier transform of (2.7.55) yields the impulse response func-
tion

φ (t) =
1

2βL

(
eβt − e−βt

)
e−αtH (t) . (2.7.57)

2.8 The Gibbs Phenomenon

We now examine the so-called the Gibbs jump phenomenon which deals with
the limiting behavior of a band-limited signal fω0(t) represented by the sam-
pling integral representation (2.7.8) at a point of discontinuity of f(t). This
phenomenon reveals the intrinsic overshoot near a jump discontinuity of a
function associated with the Fourier series. More precisely, the partial sums
of the Fourier series overshoot the function near the discontinuity, and the
overshoot continues no matter how many terms are taken in the partial sum.
However, the Gibbs phenomenon does not occur if the partial sums are re-
placed by the Cesaro means, the average of the partial sums.

In order to demonstrate the Gibbs phenomenon, we rewrite (2.7.8) in the
convolution form

fω0(t) =

∫ ∞

−∞
f(τ)

sinω0(t− τ)

π(t− τ)
dτ =(f ∗ δω0) (t) , (2.8.1)

where

δω0(t) =
sinω0t

πt
. (2.8.2)
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Clearly, at every point of continuity of f(t), we have

lim
ω0→∞ fω0(t) = lim

ω0→∞ (f ∗ δω0) (t) = lim
ω0→∞

∫ ∞

−∞
f(τ)

sinω0(t− τ)

π(t− τ)
dτ

=

∫ ∞

−∞
f(τ)

[
lim

ω0→∞
sinω0(t− τ)

π(t− τ)

]
dτ

=

∫ ∞

−∞
f(τ)δ(t− τ) dτ = f(t) . (2.8.3)

We now consider the limiting behavior of fω0(t) at the point of discontinuity
t= t0. To simplify the calculation, we set t0 =0 so that we can write f(t) as
a sum of a continuous function, fc(t) and a suitable step function

f(t) = fc(t) + [f(0+)− f(0−)] H(t). (2.8.4)

Replacing f(t) by the right-hand side of (2.8.4) in Equation (2.8.1) yields

fω0(t) =

∫ ∞

−∞
fc(τ)

sinω0(t− τ)

π(t− τ)
dτ

+ [f(0+)− f(0−)]

∫ ∞

−∞
H(τ)

sinω0(t− τ)

π(t− τ)
dτ

= fc(t) + [f(0+)− f(0−)] Hω0(t) , (2.8.5)

where

Hω0(t) =

∫ ∞

−∞
H(τ)

sinω0(t− τ)

π(t− τ)
dτ =

∫ ∞

0

sinω0(t− τ)

π(t− τ)
dτ

=

∫ ω0t

−∞

sinx

πx
dx (putting ω0(t− τ) = x)

=

(∫ 0

−∞
+

∫ ω0t

0

) (
sinx

πx

)
dx=

(∫ ∞

0

+

∫ ω0t

0

) (
sinx

πx

)
dx

=
1

2
+

1

π
si(ω0t) , (2.8.6)

and the function si(t) is defined by

si(t) =

∫ t

0

sinx

x
dx . (2.8.7)

Note that

Hω0

(
π

ω0

)
=

1

2
+

∫ π

0

sinx

πx
dx > 1 , Hω0

(
− π

ω0

)
=

1

2
−
∫ π

0

sinx

πx
dx < 0 .

Clearly, for a fixed ω0,
1
π si(ω0t) attains its maximum at t= π

ω0
in (0,∞) and

minimum at t=− π
ω0

, since for a larger t the integrand oscillates with decreas-

ing amplitudes. The function Hω0(t) is shown in Figure 2.7 since Hω0(0)=
1
2
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and fc(0)= f(0−) and

fω0(0) = fc(0) +
1

2
[f(0+)− f(0−)] =

1

2
[f(0+) + f(0−)] .
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Figure 2.7 Graph of Hω0(t).

Thus, the graph ofHω0(t) shows that as ω0 increases, the time scale changes,
and the ripples remain the same. In the limit ω0 →∞, the convergence of
Hω0(t) = (H ∗ δω0) (t) to H(t) exhibits the intrinsic overshoot leading to the
classical Gibbs phenomenon.

Example 2.8.1 (The Square Wave Function and the Gibbs Phenomenon).
Consider the single-pulse square function defined by

f(x) =

⎧⎨
⎩

1, −a< x<a
1
2 , x=±a
0, |x|>a

⎫⎬
⎭ .

The graph of f(x) is given in Figure 2.8.
Thus,

F (k) =F {f(x)}=
√

2

π

(
sin ak

k

)
.

We next define a function fλ(x) by the integral

fλ(x) =

∫ λ

−λ
F (k) eikx dk.
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a-a

f(
x)

x

1

0

Figure 2.8 The square wave function.

As |λ| →∞, fλ(x) will tend pointwise to f(x) for all x. Convergence occurs
even at x=± a because the function f(x) is defined to have a value “half way
up the step” at these points. Let us examine the behavior of fλ(x) as |λ|→∞
in a region just one side of one of the discontinuities, that is, for x∈ (0, a). For
a fixed λ, the difference, fλ(x)− f(x), oscillates above and below the value
0 as x→ a, attaining a maximum positive value at some point, say x= xλ.
Then the quantity fλ(xλ)− f(xλ) is called the overshoot.

As |λ|→∞, so the period of the oscillations tends to zero and so also xλ→ a;
however, the value of the overshoot fλ(xλ)− f(xλ) does not tend to zero but
instead tends to a finite limit. The existence of this non-zero, finite, limiting
value for the overshoot is known as the Gibbs phenomenon. This phenomenon
also occurs in an almost identical manner in the Fourier synthesis of periodic
functions using Fourier series.

2.9 Heisenberg’s Uncertainty Principle

If f ∈L2(R), then f and F (k) =F {f(x)} cannot both be essentially localized.
In other words, it is not possible that the widths of the graphs of |f(x)|2 and
|F (k)|2 can both be made arbitrarily small. This fact underlines the Heisen-
berg uncertainty principle in quantum mechanics and the bandwidth theorem
in signal analysis. If |f(x)|2 and |F (k)|2 are interpreted as weighting functions,
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then the weighted means (averages) <x> and <k> of x and k are given by

<x> =
1

||f ||22

∫ ∞

−∞
x |f(x)|2 dx, (2.9.1)

<k > =
1

||F ||22

∫ ∞

−∞
k |F (k)|2 dk. (2.9.2)

Corresponding measures of the widths of these weight functions are given by
the second moments about the respective means. Usually, it is convenient to
define widths �x and �k by

(�x)2 =
1

||f ||22

∫ ∞

−∞
(x−<x>)

2 |f(x)|2 dx, (2.9.3)

(�k)2 =
1

||F ||22

∫ ∞

−∞
(k−<k>)

2 |F (k)|2 dk. (2.9.4)

The essence of the Heisenberg principle and the bandwidth theorems lies in
the fact that the product (�x)(�k) will never less than 1

2 . Indeed,

(�x)(�k) ≥ 1

2
, (2.9.5)

where equality in (2.9.5) holds only if f(x) is a Gaussian function given by
f(x) =C exp(−ax2), a > 0.

We next state the Heisenberg inequality theorem as follows:

THEOREM 2.9.1 (Heisenberg Inequality).

If f(x), x f(x) and k F (k) belong to L2(R) and
√
x|f(x) |→ 0 as |x|→∞,

then

(�x)2(�k)2 ≥ 1

4
, (2.9.6)

where (�x)2 and (�k)2 are defined by (2.9.3) and (2.9.4), respectively. Equal-

ity in (2.9.6) holds only if f(x) is a Gaussian function given by f(x)=C e−ax
2

,
a> 0.

PROOF If the averages are <x> and <k>, then the average location of
exp(−i < k > x)f(x+<x>) is zero. Hence, it is sufficient to prove the theorem
around the zero mean values, that is, <x>=<k>=0. Since ||f ||2 = ||F ||2,
we have

||f ||42(�x)2(�k)2 =
∫ ∞

−∞
|xf(x)|2dx

∫ ∞

−∞
|kF (k)|2dk.
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Using ikF (k)=F{f ′(x)} and the Parseval formula ||f ′(x)||2 = ||ikF (k)||2, we
obtain

||f ||42(�x)2(�k)2 =

∫ ∞

−∞
|xf(x)|2dx

∫ ∞

−∞
|f ′(x)|2dx

≥
∣∣∣∣
∫ ∞

−∞

{
xf(x) f ′(x)

}
dx

∣∣∣∣
2

, (see Debnath (2002))

≥
∣∣∣∣
∫ ∞

−∞
x.
1

2

{
f ′(x) f(x) + f ′(x) f(x)

}∣∣∣∣
2

=
1

4

[∫ ∞

−∞
x

(
d

dx
|f |2

)
dx

]2

=
1

4

{[
x|f(x)|2]∞−∞ −

∫ ∞

−∞
|f |2dx

}2

=
1

4
||f ||42 ,

in which
√
xf(x)→ 0 as |x|→∞ was used to eliminate the integrated term.

This completes the proof.
If we assume f ′(x) is proportional to x f(x), that is, f ′(x) = b x f(x), where b
is a constant of proportionality, this leads to the Gaussian signals

f(x) =C exp(−ax2),
where C is a constant of integration and a=− b

2 > 0.

In 1924, Heisenberg first formulated the uncertainty principle between the
position and momentum in quantum mechanics. This principle has an impor-
tant interpretation as an uncertainty of both the position and momentum of
a particle described by a wave function ψ ∈L2(R). In other words, it is not
possible to determine the position and momentum of a particle exactly and
simultaneously.

In signal processing, time and frequency concentrations of energy of a signal
f are also governed by the Heisenberg uncertainty principle. The average or
expectation values of time t and frequency ω, are respectively defined by

< t>=
1

||f ||22

∫ ∞

−∞
t|f(t)|2dt, <ω >=

1

||F ||22

∫ ∞

−∞
ω|F (ω)|2dω, (2.9.7)

where the energy of a signal f(t) is well localized in time, and its Fourier
transform F (ω) has an energy concentrated in a small frequency domain.
The variances around these average values are given, respectively, by

σ2
t =

1

||f ||22

∫ ∞

−∞
(t−< t>)2|f(t)|2dt,

(2.9.8)

σ2
ω =

1

2π||F ||22

∫ ∞

−∞
(ω−<ω>)2|F (ω)|2dω.
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Remarks:

1. In a time-frequency analysis of signals, the measure of the resolution
of a signal f in the time or frequency domain is given by σt and σω .
Then, the joint resolution is given by the product (σt) (σω) which is
governed by the Heisenberg uncertainty principle. In other words, the
product (σt) (σω) cannot be arbitrarily small and is always greater than
the minimum value 1

2 which is attained for the Gaussian signal.

2. In many applications in science and engineering, signals with a high con-
centration of energy in the time and frequency domains are of special
interest. The uncertainty principle can also be interpreted as a mea-
sure of this concentration of the second moment of f2(t) and its energy
spectrum F 2(ω).

2.10 Applications of Fourier Transforms
to Ordinary Differential Equations

We consider the nth-order linear ordinary differential equation with constant
coefficients

Ly(x) = f(x), (2.10.1)

where L is the nth-order differential operator given by

L≡ anD
n + an−1D

n−1 + · · ·+ a1D+ a0, (2.10.2)

where an, an−1, . . . , a1, a0 are constants, D≡ d
dx and f(x) is a given function.

Application of the Fourier transform to both sides of (2.10.1) gives

[an(ik)
n + an−1(ik)

n−1 + · · ·+ a1(ik) + a0]Y (k) =F (k),

where F{y(x)}= Y (k) and F{f(x)}=F (k).
Or, equivalently

P (ik)Y (k) =F (k),

where

P (z)=
n∑
r=0

arz
r.

Thus,

Y (k) =
F (k)

P (ik)
=F (k)Q(k), (2.10.3)
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where Q(k) = 1
P (ik) .

Applying the Convolution Theorem 2.5.5 to (2.10.3) gives the formal solu-
tion

y(x) =F−1 {F (k)Q(k)}= 1√
2π

∞∫

−∞
f(ξ)q(x− ξ)dξ, (2.10.4)

provided q(x) =F−1{Q(k)} is known explicitly.
In order to give a physical interpretation of the solution (2.10.4), we consider

the differential equation with a suddenly applied impulse function f(x) = δ(x)
so that

L{G(x)}= δ(x). (2.10.5)

The solution of this equation can be written from the inversion of (2.10.3)
in the form

G(x) =F−1

{
1√
2π

Q(k)

}
=

1√
2π

q(x). (2.10.6)

Thus, the solution (2.10.4) takes the form

y(x) =

∞∫

−∞
f(ξ)G(x− ξ)dξ. (2.10.7)

Clearly, G(x) behaves like a Green’s function, that is, it is the response to a
unit impulse. In any physical system, f(x) usually represents the input func-
tion, while y(x) is referred to as the output obtained by the superposition
principle. The Fourier transform of {√2πG(x)}= q(x) is called the admit-
tance. In order to find the response to a given input, we determine the Fourier
transform of the input function, multiply the result by the admittance, and
then apply the inverse Fourier transform to the product so obtained.

We illustrate these ideas by solving a simple problem in the electrical circuit
theory.

Example 2.10.1 (Electric Current in a Simple Circuit).
The current I(t) in a simple circuit containing the resistance R and inductance
L satisfies the equation

L
dI

dt
+RI =E(t), (2.10.8)

where E(t) is the applied electromagnetic force and R and L are constants.
With E(t) =E0 exp(−a|t|), we use the Fourier transform with respect to

time t to obtain

(ikL+R)Î(k) =E0

√
2

π

a

(a2 + k2)
.

Or,

Î(k) =
aE0

iL

√
2

π

1(
k − Ri

L

)
(k2 + a2)

,
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where F{I(t)}= Î(k). The inverse Fourier transform gives

I(t) =
aE0

iπL

∞∫

−∞

exp(ikt)dk(
k− Ri

L

)
(k2 + a2)

. (2.10.9)

This integral can be evaluated by the Cauchy Residue Theorem. For t > 0

I(t) =
aE0

iπL
· 2πi

[
Residue atk=

Ri

L
+Residue at k= ia

]

=
2aE0

L

[
e−

R
L t(

a2 − R2

L2

) − e−at

2a
(
a− R

L

)
]

= E0

[
e−at

R− aL
− 2aLe−

R
L t

R2 − a2L2

]
. (2.10.10)

Similarly, for t< 0, the Residue Theorem gives

I(t) = −aE0

iπL
· 2πi[Residue atk=−ia]

= −2aE0

L

[ −Leat
(aL+R)2a

]
=

E0e
at

(aL+R)
. (2.10.11)

At t=0, the current is continuous and therefore,

I(0)= lim
t→0

I(t) =
E0

R+ aL
.

If E(t) = δ(t), then Ê(k) = 1√
2π

and the solution is obtained by using the

inverse Fourier transform

I(t) =
1

2πiL

∞∫

−∞

eikt

k − iR
L

dk,

which is, by the Theorem of Residues,

=
1

L
[Residue atk= iR/L]

=
1

L
exp

(
−Rt
L

)
. (2.10.12)

Thus, the current tends to zero as t→∞ as expected.

Example 2.10.2 Find the solution of the ordinary differential equation

−d
2u

dx2
+ a2u= f(x), −∞<x<∞ (2.10.13)
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by the Fourier transform method.

Application of the Fourier transform to (2.10.13) gives

U(k) =
F (k)

k2 + a2
.

This can readily be inverted by the Convolution Theorem 2.5.5 to obtain

u(x) =
1√
2π

∞∫

−∞
f(ξ)g(x− ξ)dξ, (2.10.14)

where g(x) =F−1
{

1
k2+a2

}
= 1

a

√
π
2 exp(−a|x|) by Example 2.3.2. Thus, the

final solution is

u(x) =
1

2a

∞∫

−∞
f(ξ)e−a|x−ξ| dξ. (2.10.15)

Example 2.10.3 (The Bernoulli-Euler Beam Equation).

We consider the vertical deflection u(x) of an infinite beam on an elastic
foundation under the action of a prescribed vertical loadW (x). The deflection
u(x) satisfies the ordinary differential equation

EI
d4u

dx4
+ κu=W (x), −∞<x<∞. (2.10.16)

where EI is the flexural rigidity and κ is the foundation modulus of the
beam. We find the solution assuming that W (x) has a compact support and
u, u′, u′′, u′′′ all tend to zero as |x| →∞.

We first rewrite (2.10.16) as

d4u

dx4
+ a4u=w(x) (2.10.17)

where a4 = κ/EI and w(x) =W (x)/EI. Use of the Fourier transform to (2.10.17)
gives

U(k) =
W (k)

k4 + a4
.
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The inverse Fourier transform gives the solution

u(x) =
1√
2π

∞∫

−∞

W (k)

k4 + a4
eikx dk

=
1

2π

∞∫

−∞

eikx

k4 + a4
dk

∞∫

−∞
w(ξ)e−ikξ dξ

=

∞∫

−∞
w(ξ)G(ξ, x) dξ, (2.10.18)

where

G(ξ, x) =
1

2π

∞∫

−∞

eik(x−ξ)

k4 + a4
dk=

1

π

∞∫

0

cos k(x− ξ) dk

k4 + a4
. (2.10.19)

The integral can be evaluated by the Theorem of Residues or by using the
table of Fourier integrals. We simply state the result

G(ξ, x) =
1

2a3
exp

(
− a√

2
|x− ξ|

)
sin

[
a(x− ξ)√

2
+
π

4

]
. (2.10.20)

In particular, we find the explicit solution due to a concentrated load of unit
strength acting at some point x0, that is, w(x) = δ(x− x0). Then the solution
for this case becomes

u(x) =

∞∫

−∞
δ(ξ − x0)G(x, ξ) dξ =G(x, x0). (2.10.21)

Thus, the kernel G(x, ξ) involved in the solution (2.10.18) has the physical
significance of being the deflection, as a function of x, due to a unit point load
acting at ξ. Thus, the deflection due to a point load of strength w(ξ) dξ at ξ is
w(ξ) dξ ·G(x, ξ), and hence, (2.10.18) represents the superposition of all such
incremental deflections.

The reader is referred to a more general dynamic problem of an infinite
Bernoulli-Euler beam with damping and elastic foundation that has been
solved by Stadler and Shreeves (1970), and also by Sheehan and Debnath
(1972). These authors used the Fourier-Laplace transform method to deter-
mine the steady state and the transient solutions of the beam problem.
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2.11 Solutions of Integral Equations

The method of Fourier transforms can be used to solve simple integral equa-
tions of the convolution type. We illustrate the method by examples.

We first solve the Fredholm integral equation with convolution kernel in the
form ∞∫

−∞
f(t)g(x− t) dt+ λf(x) = u(x), (2.11.1)

where g(x) and u(x) are given functions and λ is a known parameter.
Application of the Fourier transform to (2.11.1) gives

√
2πF (k)G(k) + λF (k) =U(k).

Or,

F (k) =
U(k)√

2πG(k) + λ
. (2.11.2)

The inverse Fourier transform leads to a formal solution

f(x) =
1√
2π

∞∫

−∞

U(k)eikxdk√
2πG(k) + λ

. (2.11.3)

In particular, if g(x) = 1
x so that

G(k) =−i
√
π

2
sgn k,

then the solution becomes

f(x) =
1√
2π

∞∫

−∞

U(k)eikxdk

λ− iπ sgn k
. (2.11.4)

If λ=1 and g(x) = 1
2

(
x
|x|
)
so that G(k) = 1√

2π
1

(ik) , solution (2.11.3) reduces

to the form

f(x) =
1√
2π

∞∫

−∞
(ik)

U(k)eikx dk

(1 + ik)

=
1√
2π

∞∫

−∞
F{u′(x)}F{

√
2π e−x}eikx dk

= u′(x) ∗√2π e−x =

∞∫

−∞
u′(ξ) exp(ξ − x) dξ. (2.11.5)
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Example 2.11.1 Find the solution of the integral equation
∞∫

−∞
f(x− ξ)f(ξ) dξ =

1

x2 + a2
. (2.11.6)

Application of the Fourier transform gives

√
2πF (k)F (k) =

√
π

2

e−a|k|

a
.

Or,

F (k) =
1√
2a

exp

{
−1

2
a|k|

}
. (2.11.7)

The inverse Fourier transform gives the solution

f(x) =
1√
2π

1√
2a

∞∫

−∞
exp

(
ikx− 1

2
a|k|

)
dk

=
1

2
√
πa

⎡
⎣

∞∫

0

exp
{
−k

(a
2
+ ix

)}
dk +

∞∫

0

exp
{
−k

(a
2
− ix

)}
dk

⎤
⎦

=
1

2
√
πa

[
4a

(4x2 + a2)

]
=

√
a

π
· 2

(4x2 + a2)
.

Using the table B-1 of Fourier transform (see No. 4), we also get the same
result :

f(x) =F−1 {F (k)}=
√
a

x

2

4x2 + a2
.

Example 2.11.2 Solve the integral equation
∞∫

−∞

f(t) dt

(x− t)2 + a2
=

1

(x2 + b2)
, b > a> 0. (2.11.8)

Taking the Fourier transform, we obtain

√
2π F (k)F

{
1

x2 + a2

}
=

√
π

2

e−b|k|

b
,

or,
√
2π F (k)

√
π

2
· e

−a|k|

a
=

√
π

2

e−b|k|

b
.
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Thus,

F (k) =
1√
2π

(a
b

)
exp{−|k|(b− a)}. (2.11.9)

The inverse Fourier transform leads to the solution

f(x) =
a

2πb

∞∫

−∞
exp[ikx− |k|(b− a)]dk

=
a

2πb

⎡
⎣

∞∫

0

exp[−k{(b− a) + ix}]dk+
∞∫

0

exp[−k{(b− a)− ix}]
⎤
⎦ dk

=
a

2πb

[
1

(b− a) + ix
+

1

(b− a)− ix

]

=
( a

πb

) (b− a)

(b− a)2 + x2
. (2.11.10)

Example 2.11.3 Solve the integral equation

f(x) + 4

∞∫

−∞
e−a|x−t|f(t)dt= g(x). (2.11.11)

Application of the Fourier transform gives

F (k) + 4
√
2πF (k) · 2a√

2π(a2 + k2)
=G(k)

F (k) =
(a2 + k2)

a2 + k2 + 8a
G(k). (2.11.12)

The inverse Fourier transform gives

f(x) =
1√
2π

∞∫

−∞

(a2 + k2)G(k)

a2 + k2 + 8a
eikxdk. (2.11.13)

In particular, if a=1 and g(x) = e−|x| so that G(k) =
√

2
π

1
1+k2 , then solution

(2.11.13) becomes

f(x) =
1

π

∞∫

−∞

eikx

k2 + 32
dk. (2.11.14)

For x> 0, we use a semicircular closed contour in the lower half of the complex
plane to evaluate (2.11.14). It turns out that

f(x) =
1

3
e−3x. (2.11.15)



76 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

Similarly, for x< 0, a semicircular closed contour in the upper half of the
complex plane is used to evaluate (2.11.14) so that

f(x) =
1

3
e3x, x< 0. (2.11.16)

Thus, the final solution is

f(x) =
1

3
exp(−3|x|). (2.11.17)

2.12 Solutions of Partial Differential Equations

In this section we illustrate how the Fourier transform method can be used
to obtain the solution of boundary value and initial value problems for linear
partial differential equations of different kinds.

Example 2.12.1 (Dirichlet’s Problem in the Half-Plane).
We consider the solution of the Laplace equation in the half-plane

uxx + uyy =0, −∞<x<∞, y≥ 0, (2.12.1)

with the boundary conditions

u(x, 0)= f(x), −∞<x<∞, (2.12.2)

u(x, y)→ 0 as |x|→∞, y→∞. (2.12.3)

We introduce the Fourier transform with respect to x

U(k, y)=
1√
2π

∞∫

−∞
e−ikxu(x, y)dx (2.12.4)

so that (2.12.1)–(2.12.3) becomes

d2U

dy2
− k2U = 0, (2.12.5)

U(k, 0)=F (k), U(k, y)→ 0 as y→∞. (2.12.6ab)

Thus, the solution of this transformed system is

U(k, y) =F (k)e−|k|y. (2.12.7)
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Application of the Convolution Theorem 2.5.5 gives the solution

u(x, y) =
1√
2π

∞∫

−∞
f(ξ)g(x− ξ)dξ, (2.12.8)

where

g(x) =F−1{e−|k|y}=
√

2

π

y

(x2 + y2)
. (2.12.9)

Consequently, the solution (2.12.8) becomes

u(x, y) =
y

π

∞∫

−∞

f(ξ)dξ

(x− ξ)2 + y2
, y > 0. (2.12.10)

This is the well-known Poisson integral formula in the half-plane. It is noted
that

lim
y→0+

u(x, y) =

∞∫

−∞
f(ξ)

[
lim
y→0+

y

π
· 1

(x− ξ)2 + y2

]
dξ=

∞∫

−∞
f(ξ)δ(x− ξ)dξ,

(2.12.11)
where Cauchy’s definition of the delta function is used, that is,

δ(x− ξ) = lim
y→0+

y

π
· 1

(x− ξ)2 + y2
. (2.12.12)

This may be recognized as a solution of the Laplace equation for a dipole
source at (x, y) = (ξ, 0).

In particular, when

f(x) =T0H(a− |x|), (2.12.13)

the solution (2.12.10) reduces to

u(x, y) =
yT0
π

a∫

−a

dξ

(ξ − x)2 + y2

=
T0
π

[
tan−1

(
x+ a

y

)
− tan−1

(
x− a

y

)]

=
T0
π

tan−1

(
2ay

x2 + y2 − a2

)
. (2.12.14)

The curves in the upper half-plane for which the steady state temperature is
constant are known as isothermal curves. In this case, these curves represent
a family of circular arcs

x2 + y2 − αy= a2 (2.12.15)
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a
x

y

-a

Figure 2.9 A family of circular arcs.

with centers on the y-axis and the fixed end points on the x-axis at x=±a.
The graphs of the arcs are is displayed in Figure 2.9.

Another special case deals with

f(x) = δ(x). (2.12.16)

The solution for this case follows from (2.12.10) and is

u(x, y) =
y

π

∞∫

−∞

δ(ξ)dξ

(x− ξ)2 + y2
=
y

π

1

(x2 + y2)
. (2.12.17)

Further, we can readily deduce the solution of the Neumann problem in the
half-plane from the solution of the Dirichlet problem.

Example 2.12.2 (Neumann’s Problem in the Half-Plane).
Find a solution of the Laplace equation

uxx + uyy =0, −∞<x<∞, y > 0, (2.12.18)

with the boundary condition

uy(x, 0)= f(x), −∞<x<∞. (2.12.19)

This condition specifies the normal derivative on the boundary, and physically,
it describes the fluid flow or, heat flux at the boundary.

We define a new function υ(x, y) = uy(x, y) so that

u(x, y) =

y∫
υ(x, η)dη, (2.12.20)
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where an arbitrary constant can be added to the right-hand side. Clearly, the
function υ satisfies the Laplace equation

∂2υ

∂x2
+
∂2υ

∂y2
=
∂2uy
∂x2

+
∂2uy
∂y2

=
∂

∂y
(uxx + uyy) = 0,

with the boundary condition

υ(x, 0)= uy(x, 0)= f(x) for −∞<x<∞.

Thus, υ(x, y) satisfies the Laplace equation with the Dirichlet condition on
the boundary. Obviously, the solution is given by (2.12.10); that is,

υ(x, y) =
y

π

∞∫

−∞

f(ξ)dξ

(x− ξ)2 + y2
. (2.12.21)

Then the solution u(x, y) can be obtained from (2.12.20) in the form

u(x, y) =

y∫
υ(x, η)dη=

1

π

y∫
η dη

∞∫

−∞

f(ξ)dξ

(x− ξ)2 + η2

=
1

π

∞∫

−∞
f(ξ)dξ

y∫
η dη

(x− ξ)2 + η2
, y > 0

=
1

2π

∞∫

−∞
f(ξ) log[(x− ξ)2 + y2]dξ, (2.12.22)

where an arbitrary constant can be added to this solution. In other words, the
solution of any Neumann problem is uniquely determined up to an arbitrary
constant.

Example 2.12.3 (The Cauchy Problem for the Diffusion Equation).
We consider the initial value problem for a one-dimensional diffusion equation
with no sources or sinks

ut= κuxx, −∞<x<∞, t > 0, (2.12.23)

where κ is a diffusivity constant with the initial condition

u(x, 0)= f(x), −∞<x<∞. (2.12.24)

We solve this problem using the Fourier transform in the space variable x
defined by (2.12.4). Application of this transform to (2.12.23)–(2.12.24) gives

Ut = −κk2U, t > 0, (2.12.25)

U(k, 0) = F (k). (2.12.26)
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The solution of the transformed system is

U(k, t) =F (k) e−κk
2t. (2.12.27)

The inverse Fourier transform gives the solution

u(x, t) =
1√
2π

∞∫

−∞
F (k) exp[(ikx− κk2t)]dk

which is, by the Convolution Theorem 2.5.5,

=
1√
2π

∞∫

−∞
f(ξ)g(x− ξ)dξ, (2.12.28)

where

g(x) =F−1{e−κk2t}= 1√
2κt

exp

(
− x2

4κt

)
, by (2.3.5).

Thus, solution (2.12.28) becomes

u(x, t) =
1√
4πκt

∞∫

−∞
f(ξ) exp

[
− (x− ξ)2

4κt

]
dξ. (2.12.29)

The integrand involved in the solution consists of the initial value f(x) and
Green’s function (or, elementary solution) G(x− ξ, t) of the diffusion equation
for the infinite interval:

G(x− ξ, t) =
1√
4πκt

exp

[
− (x− ξ)2

4κt

]
. (2.12.30)

So, in terms of G(x− ξ, t), solution (2.12.29) can be written as

u(x, t) =

∞∫

−∞
f(ξ)G(x− ξ, t)dξ (2.12.31)

so that, in the limit as t→ 0+, this formally becomes

u(x, 0)= f(x) =

∞∫

−∞
f(ξ) lim

t→0+
G(x− ξ, t)dξ.

The limit of G(x− ξ, t) represents the Dirac delta function

δ(x− ξ) = lim
t→0+

1

2
√
πκt

exp

[
− (x− ξ)2

4 κt

]
. (2.12.32)
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Figure 2.10 Graphs of G(x, t) against x.

Graphs of G(x, t) are shown in Figure 2.10 for different values of κt.
It is important to point out that the integrand in (2.12.31) consists of the

initial temperature distribution f(x) and Green’s function G(x− ξ, t) which
represents the temperature response along the rod at time t due to an initial
unit impulse of heat at x= ξ. The physical meaning of the solution (2.12.31)
is that the initial temperature distribution f(x) is decomposed into a spec-
trum of impulses of magnitude f(ξ) at each point x= ξ to form the resulting
temperature f(ξ)G(x− ξ, t). Thus, the resulting temperature is integrated to
find solution (2.12.31). This is called the principle of integral superposition.

We make the change of variable

ξ − x

2
√
κt

= ζ, dζ =
dξ

2
√
κt

to express solution (2.12.29) in the form

u(x, t) =
1√
π

∞∫

−∞
f(x+ 2

√
κt ζ) exp(−ζ2)dζ. (2.12.33)

The integral solution (2.12.33) or (2.12.29) is called the Poisson integral rep-
resentation of the temperature distribution. This integral is convergent for all
time t> 0, and the integrals obtained from (2.12.33) by differentiation under
the integral sign with respect to x and t are uniformly convergent in the neigh-
borhood of the point (x, t). Hence, the solution u(x, t) and its derivatives of
all orders exist for t > 0.

Finally, we consider a special case involving discontinuous initial condition
in the form

f(x) = T0H(x) , (2.12.34)
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where T0 is a constant. In this case, solution (2.12.29) becomes

u(x, t) =
T0

2
√
πκt

∞∫

0

exp

[
− (x− ξ)2

4 κt

]
dξ. (2.12.35)

Introducing the change of variable η= ξ−x
2
√
κt
, we can express solution (2.12.35)

in the form

u(x, t) =
T0√
π

∞∫

−x/2√κt

e−η
2

dη=
T0
2
erfc

(
− x

2
√
κt

)

=
T0
2

[
1 + erf

(
x

2
√
κt

)]
. (2.12.36)

The solution given by equation (2.12.36) with T0 =1 is shown in Figure 2.11.
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Figure 2.11 The time development of solution (2.12.36).

If f(x) = δ(x), then the fundamental solution (2.12.29) is given by

u(x, t) =
1√

4π κ t
exp

(
− x2

4κ t

)
.

Example 2.12.4 (The Cauchy Problem for the Wave Equation).
Obtain the d’Alembert solution of the initial value problem for the wave equa-
tion

utt= c2uxx, −∞<x<∞, t > 0, (2.12.37)
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with the arbitrary but fixed initial data

u(x, 0)= f(x), ut(x, 0)= g(x), −∞<x<∞. (2.12.38ab)

Application of the Fourier transform F{u(x, t)}=U(k, t) to this system gives

d2U

dt2
+ c2k2U =0,

U(k, 0)=F (k),

(
dU

dt

)
t=0

=G(k).

The solution of the transformed system is

U(k, t)=A eickt +B e−ickt,

where A and B are constants to be determined from the transformed data so
that A+B=F (k) and A−B= 1

ikcG(k). Solving for A and B, we obtain

U(k, t)=
1

2
F (k)(eickt + e−ickt) +

G(k)

2ick
(eickt − e−ickt). (2.12.39)

Thus, the inverse Fourier transform of (2.12.39) yields the solution

u(x, t) =
1

2

⎡
⎣ 1√

2π

∞∫

−∞
F (k){eik(x+ct) + eik(x−ct)}dk

⎤
⎦

+
1

2c

⎡
⎣ 1√

2π

∞∫

−∞

G(k)

ik
{eik(x+ct) − eik(x−ct)}dk

⎤
⎦ . (2.12.40)

We use the following results

f(x) =F−1{F (k)}= 1√
2π

∞∫

−∞
eikxF (k)dk,

g(x) =F−1{G(k)}= 1√
2π

∞∫

−∞
eikxG(k)dk,

to obtain the solution in the final form

u(x, t) =
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

1√
2π

∞∫

−∞
G(k)dk

x+ct∫

x−ct
eikξdξ

=
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

x+ct∫

x−ct
dξ

⎡
⎣ 1√

2π

∞∫

−∞
eikξG(k)dk

⎤
⎦

=
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

x+ct∫

x−ct
g(ξ)dξ. (2.12.41)
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This is the well-known d’Alembert solution of the wave equation.
The method and the form of the solution reveal several important features

of the wave equation. First, the method of solution essentially proves the
existence of the d’Alembert solution and the solution is unique provided f(x)
is twice continuously differentiable and g(x) is continuously differentiable.
Second, the terms involving f(x± ct) in (2.12.41) show that disturbances
are propagated along the characteristics with constant velocity c. Both terms
combined together suggest that the value of the solution at position x and at
time t depends only on the initial values of f(x) at x− ct and x+ ct and the
values of g(x) between these two points. The interval (x− ct, x+ ct) is called
the domain of dependence of the variable (x, t). Finally, the solution depends
continuously on the initial data, that is, the problem is well posed. In other
words, a small change in either f(x) or g(x) results in a correspondingly small
change in the solution u(x, t).

In particular, if f(x) = exp(−x2) and g(x)≡ 0, the time development of
solution (2.12.41) with c=1 is shown in Figure 2.12. In this case, the solution
becomes

u(x, t) =
1

2
[e−(x−t)2 + e−(x+t)2 ]. (2.12.42)

As shown in Figure 2.12, the initial form f(x) = exp(−x2) is found to split
into two similar waves propagating in opposite direction with unit velocity.

Example 2.12.5 (The Schrödinger Equation in Quantum Mechanics ).
The time-dependent Schrödinger equation of a particle of mass m is

i�ψt=

[
V (x)− �

2

2m
∇2

]
ψ=Hψ, (2.12.43)

where h=2π� is the Planck constant, ψ(x, t) is the wave function, V (x) is the

potential, ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the three-dimensional Laplacian, and H is
the Hamiltonian.

If V (x) = constant= V , we can seek a plane wave solution of the form

ψ(x, t) =A exp[i(κ · x− ωt)], (2.12.44)

where A is a constant amplitude, κ= (k, l,m) is the wavenumber vector, and
ω is the frequency.

Substituting this solution into (2.12.43), we conclude that this solution is
possible provided the following relation is satisfied:

i�(−iω)= V − �
2

2m
(iκ)2, κ2 = k2 + l2 +m2.

Or,

�ω= V +
�
2κ2

2m
. (2.12.45)
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Figure 2.12 The time development of solution (2.12.42).

This is called the dispersion relation and shows that the sum of the potential

energy V and the kinetic energy (�κ)2

2m is equal to the total energy �ω. Further,
the kinetic energy

K.E.=
1

2m
(�κ)2 =

p2

2m
, (2.12.46)

where p= �κ is the momentum of the particle.
The phase velocity, Cp and the group velocity, Cg of the wave are defined

by

Cp =
ω

κ
κ̂, Cg =∇κω(κ), (2.12.47ab)

where κ is the wavenumber vector and κ= |κ| and κ̂ is the unit wavenumber
vector.

In the one-dimensional case, the phase velocity is

Cp=
ω

k
(2.12.48)

and the group velocity is

Cg =
∂ω

∂k
=

�k

m
=
p

m
=
mυ

υ
= υ. (2.12.49)

This shows that the group velocity is equal to the classical particle velocity υ.
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We now use the Fourier transform method to solve the one-dimensional
Schrödinger equation for a free particle (V ≡ 0), that is,

i�ψt = − �
2

2m
ψxx, −∞<x<∞, t > 0, (2.12.50)

ψ(x, 0) = ψ0(x), −∞<x<∞, (2.12.51)

ψ(x, t) → 0 as |x|→∞. (2.12.52)

Application of the Fourier transform to (2.12.50)–(2.12.52) gives

Ψt=− i�k
2

2m
Ψ, Ψ(k, 0)=Ψ0(k). (2.12.53)

The solution of this transformed system is

Ψ(k, t) =Ψ0(k) exp(−iαk2t), α=
�

2m
. (2.12.54)

The inverse Fourier transform gives the formal solution

ψ(x, t) = F−1{Ψ0(k) exp(−iαk2t)},
which is, by the convolution theorem 2.5.5,

ψ(x, t) =
1

2π

∞∫

−∞
Ψ0(ξ)g(x− ξ)dξ, (2.12.55)

where

g(x) =F−1{exp(−iαk2t)}= 1√
2iαt

exp(− x2

4iαt
).

Consequently,

ψ(x, t) =
1√

4πiαt

∞∫

−∞
Ψ0(ξ) exp

(
− i(x− ξ)2

4iαt

)
dξ

=
1− i√
8παt

∞∫

−∞
Ψ0(ξ) exp

(
− i(x− ξ)2

4iαt

)
dξ. (2.12.56)

This is the integral solution of the problem.

Example 2.12.6 (Slowing Down of Neutrons).
We consider the problem of slowing down neutrons in an infinite medium with
a source of neutrons governed by

ut= uxx + δ(x)δ(t), −∞<x<∞, t > 0, (2.12.57)

u(x, 0)= δ(x), −∞<x<∞, (2.12.58)

u(x, t)→ 0 as |x|→∞ for t > 0, (2.12.59)
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where u(x, t) represents the number of neutrons per unit volume per unit
time, which reach the age t, and δ(x)δ(t) is the source function.

Application of the Fourier transform method gives

dU

dt
+ k2U =

1√
2π

δ(t),

U(k, 0) =
1√
2π
.

The solution of this transformed system is

U(k, t) =
1√
2π

e−k
2t,

and the inverse Fourier transform gives the solution

u(x, t) =
1

2π

∞∫

−∞
eikx−k

2tdk=
1√
2π

F−1
{
e−k

2t
}

=
1√
4πt

exp

(
−x

2

4t

)
. (2.12.60)

Example 2.12.7 (One-Dimensional Wave Equation).
Obtain the solution of the one-dimensional wave equation

utt= c2uxx, −∞<x<∞, t > 0, (2.12.61)

u(x, 0)= 0, ut(x, 0)= δ(x), −∞<x<∞. (2.12.62ab)

Making reference to Example 2.12.4, we find f(x)≡ 0 and g(x) = δ(x) so
that F (k) = 0 and G(k) = 1√

2π
. The solution for U(k, t) is given by

U(k, t) =
1

2c
√
2π

[
eickt

ik
− e−ickt

ik

]
.

Thus, the inverse Fourier transform gives

u(x, t) =
1

2c
√
2π

F−1

{
eickt

ik
− e−ickt

ik

}

=
1

2c
√
2π

[√
π

2
{sgn(x + ct)− sgn(x− ct)}

]

=
1

4c
[sgn(x + ct)− sgn(x− ct)]

=

⎧⎪⎪⎨
⎪⎪⎩

1− 1

4c
=0, |x|> ct> 0

1 + 1

4c
=

1

2c
, |x|< ct.
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In other words, the solution can be written in the form

u(x, t) =
1

2c
H(c2t2 − x2).

Example 2.12.8 (Linearized Shallow Water Equations in a Rotating Ocean).
The horizontal equations of motion of a uniformly rotating inviscid homoge-
neous ocean of constant depth h are

ut − fυ = −g ηx, (2.12.63)

υt + fu = 0, (2.12.64)

ηt + hux = 0, (2.12.65)

where f =2Ω sin θ is the Coriolis parameter, which is constant in the present
problem, g is the acceleration due to gravity, η(x, t) is the free surface eleva-
tion, u(x, t) and υ(x, t) are the velocity fields. The wave motion is generated
by the prescribed free surface elevation at t=0 so that the initial conditions
are

u(x, 0)= 0, υ(x, 0)= 0, η(x, 0)= η0H(a− |x|), (2.12.66abc)

and the velocity fields and free surface elevation function vanish at infinity.
We apply the Fourier transform with respect to x defined by

F{f(x, t)}=F (k, t) =
1√
2π

∞∫

−∞
e−ikxf(x, t)dx (2.12.67)

to the system (2.12.63)–(2.12.65) so that the system becomes

dU

dt
− fV = −gikE

dV

dt
+ fU = 0

dE

dt
= −hikU

U(k, 0)= 0=V (k, 0), E(k, 0)=

√
2

π
η0

(
sin ak

k

)
, (2.12.68abc)

where E(k, t) =F{η(x, t)}.
Elimination of U and V from the transformed system gives a single equation

for E(k, t) as
d3E

dt3
+ ω2 dE

dt
=0, (2.12.69)
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where ω2 =(f2 + c2k2) and c2 = gh. The general solution of (2.12.69) is

E(k, t) =A+B cosωt+C sinωt, (2.12.70)

where A, B, and C are arbitrary constants to be determined from (2.12.68c)
and (

d2E

dt2

)
t=0

=−c2k2E(k, 0)=−c2k2 ·
√

2

π
η0

sin ak

k
,

which gives

B=

√
2

π
η0

(
sin ak

k

)
·
(
c2k2

ω2

)
.

Also
(
dE
dt

)
t=0

=0 gives C ≡ 0 and (2.12.68c) implies A+B=
√

2
πη0

sin ak
k .

Consequently, the solution (2.12.70) becomes

E(k, t) =

√
2

π
η0

(
sinak

k

)
f2 + c2k2 cosωt

(f2 + c2k2)
. (2.12.71)

Similarly

U(k, t) =

√
2

π

η0 sin ak

ih
· c2 sinωt√

c2k2 + f2
, (2.12.72)

V (k, t) =
1

f

(
dU

dt
+ gik E

)
. (2.12.73)

The inverse Fourier transform gives the formal solution for η(x, t)

η(x, t) =
(η0
π

) ∞∫

−∞

sin ak

k
· f

2 + c2k2 cosωt

(f2 + c2k2)
eikxdk. (2.12.74)

Similar integral expressions for u(x, t) and υ(x, t) can be obtained.

Example 2.12.9 (Sound Waves Induced by a Spherical Body).
We consider propagation of sound waves in an unbounded fluid medium gen-
erated by an impulsive radial acceleration of a sphere of radius a. Such waves
are assumed to be spherically symmetric and the associated velocity potential
on the pressure field p(r, t) satisfies the wave equation

∂2p

∂t2
= c2

[
1

r2
∂

∂r

(
r2
∂p

∂r

)]
, (2.12.75)

where c is the speed of sound. The boundary condition required for the prob-
lem is

1

ρ0

(
∂p

∂r

)
=−a0 δ(t) on r= a, (2.12.76)
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where ρ0 is the mean density of the fluid and a0 is a constant.
Application of the Fourier transform of p(r, t) with respect to time t gives

1

r2
d

dr

(
r2
dP

dr

)
=−k2P (r, ω), (2.12.77)

dP

dr
=−a0ρ0√

2π
, on r= a, (2.12.78)

where F{p(r, t)}=P (r, ω) and k2 = ω2

c2 .
The general solution of (2.12.77)–(2.12.78) is

P (r, ω) =
A

r
eikr +

B

r
e−ikr, (2.12.79)

where A and B are arbitrary constants.
The inverse Fourier transform gives the solution

p(r, t) =
1√
2π

∞∫

−∞

[
A

r
ei(ωt+kr) +

B

r
ei(ωt−kr)

]
dω. (2.12.80)

The first term of the integrand represents incoming spherical waves generated
at infinity and the second term corresponds to outgoing spherical waves due to
the impulsive radial acceleration of the sphere. Since there is no disturbance at
infinity, we impose the Sommerfeld radiation condition at infinity to eliminate
the incoming waves so that A=0, and B is calculated using (2.12.78). Thus,
the inverse Fourier transform gives the formal solution

p(r, t) =

(
a0ρ0a

2

2πr

) ∞∫

−∞

exp
[
iω

{
t− r−a

c

}]
dω(

1 + iωa
c

) . (2.12.81)

We next choose a closed contour with a semicircle in the upper half plane
and the real ω-axis. Using the Cauchy theory of residues, we calculate the
residue contribution from the pole at ω= ic/a. Finally, it turns out that the
final solution is

u(r, t) =
(ρ0a0ca

r

)
exp

[
− c

a

(
t− r − a

c

)]
H

(
t− r − a

c

)
. (2.12.82)

Example 2.12.10 (The Linearized Korteweg-de Vries Equation).
The linearized KdV equation for the free surface elevation η(x, t) in an inviscid
water of constant depth h is

ηt + cηx +
ch2

6
ηxxx =0, −∞<x<∞, t > 0, (2.12.83)
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where c=
√
gh is the shallow water speed.

Solve equation (2.12.83) with the initial condition

η(x, 0) = f(x), −∞<x<∞. (2.12.84)

Application of the Fourier transform F{η(x, t)}=E(k, t) to the KdV sys-
tem gives the solution for E(k, t) in the form

E(k, t) =F (k) exp

[
ikct

(
k2h2

6
− 1

)]
.

The inverse transform gives

η(x, t) =
1√
2π

∞∫

−∞
F (k) exp

[
ik

{
(x− ct) +

(
cth2

6

)
k2
}]

dk. (2.12.85)

In particular, if f(x) = δ(x), then (2.12.85) reduces to the Airy integral

η(x, t) =
1

π

∞∫

0

cos

[
k(x− ct) +

(
cth2

6

)
k3
]
dk (2.12.86)

which is, in terms of the Airy function,

=

(
cth2

2

)− 1
3

Ai

[(
cth2

2

)− 1
3

(x− ct)

]
, (2.12.87)

where the Airy function Ai(az) is defined by

Ai(az) =
1

2πa

∞∫

−∞
exp

[
i

(
kz +

k3

3a3

)]
dk=

1

πa

∞∫

0

cos

(
kz +

k3

3a3

)
dk.

(2.12.88)

Example 2.12.11 (Biharmonic Equation in Fluid Mechanics).
Usually, the biharmonic equation arises in fluid mechanics and in elasticity.
The equation can readily be solved by using the Fourier transform method.
We first derive a biharmonic equation from the Navier-Stokes equations of
motion in a viscous fluid which is given by

∂u

∂t
+ (u · ∇)u=F− 1

ρ
∇p+ ν∇2u, (2.12.89)

where u=(u, υ, w) is the velocity field, F is the external force per unit mass
of the fluid, p is the pressure, ρ is the density and ν is the kinematic viscosity
of the fluid.
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The conservation of mass of an incompressible fluid is described by the
continuity equation

div u=0. (2.12.90)

In terms of some representative length scale L and velocity scale U , it is
convenient to introduce the nondimensional flow variables

x′ =
x

L
, t′ =

Ut

L
, u′ =

u

U
, p′ =

p

ρU2
. (2.12.91)

In terms of these nondimensional variables, equation (2.12.89) without the
external force can be written, dropping the primes, as

∂u

∂t
+ (u · ∇)u=−∇p+ 1

R
∇2u, (2.12.92)

where R=UL/ν is called the Reynolds number. Physically, it measures the
ratio of inertial forces of the order U2/L to viscous forces of the order νU/L2,
and it has special dynamical significance. This is one of the most fundamental
nondimensional parameters for the specification of the dynamical state of
viscous flow fields.

In the absence of the external force, F= 0, it is preferable to write the
Navier-Stokes equations (2.12.89) in the form (since u×ω= 1

2∇u2 − u · ∇u)

∂u

∂t
− u×ω=−∇

(
p

ρ
+

1

2
u2
)
− ν∇2u, (2.12.93)

where ω=curl u is the vorticity vector and u2 = u · u.
We can eliminate the pressure p from (2.12.93) by taking the curl of (2.12.93),

giving
∂ω

∂t
− curl(u×ω) = ν∇2ω (2.12.94)

which becomes, by div u=0 and div ω=0,

∂ω

∂t
=(ω · ∇)u− (u · ∇)ω + ν∇2ω. (2.12.95)

This is universally known as the vorticity transport equation. The left-hand
side represents the rate of change of vorticity. The first two terms on the
right-hand side represent the rate of change of vorticity due to stretching and
twisting of vortex lines. The last term describes the diffusion of vorticity by
molecular viscosity.

In case of two-dimensional flow, (ω · ∇)u=0, equation (2.12.95) becomes

Dω

dt
=
∂ω

∂t
+ (u · ∇)ω= ν∇2ω, (2.12.96)

where u= (u, υ, 0) and ω=(0, 0, ζ), and ζ = υx − uy. Equation (2.12.96) shows
that only convection and conduction occur. In terms of the stream function
ψ(x, y) where

u=ψy, υ= −ψx, ω=−∇2ψ, (2.12.97)
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which satisfy (2.12.90) identically, equation (2.12.96) assumes the form

∂

∂t

(∇2ψ
)
+

(
∂ψ

∂y

∂

∂x
− ∂ψ

∂x

∂

∂y

)
∇2ψ= ν∇4ψ. (2.12.98)

In case of slow motion (velocity is small) or in case of a very viscous fluid
(ν very large), the Reynolds number R is very small. For a steady flow in such
cases of an incompressible viscous fluid, ∂

∂t ≡ 0, while (u · ∇)ω is negligible
in comparison with the viscous term. Consequently, (2.12.98) reduces to the
standard biharmonic equation

∇4ψ=0. (2.12.99)

Or, more explicitly,

∇2(∇2)ψ≡ψxxxx + 2ψxxyy + ψyyyy =0. (2.12.100)

We solve this equation in a semi-infinite viscous fluid bounded by an in-
finite horizontal plate at y=0, and the fluid is introduced normally with a
prescribed velocity through a strip −a<x<a of the plate. Thus, the required
boundary conditions are

u≡ ∂ψ

∂y
=0, υ≡ ∂ψ

∂x
=H(a− |x|)f(x) on y=0, (2.12.101ab)

where f(x) is a given function of x.
Furthermore, the fluid is assumed to be at rest at large distances from the

plate, that is,

(ψx, ψy)→ (0, 0) as y→∞ for −∞<x<∞. (2.12.102)

To solve the biharmonic equation (2.12.100) with the boundary conditions
(2.12.101ab) and (2.12.102), we introduce the Fourier transform with respect
to x

Ψ(k, y)=
1√
2π

∞∫

−∞
e−ikxψ(x, y)dx. (2.12.103)

Thus, the Fourier transformed problem is

(
d2

dy2
− k2

)2

Ψ(k, y) = 0, (2.12.104)

dΨ

dy
=0, (ik)Ψ=F (k), y=0, (2.12.105ab)

where

F (k) =
1√
2π

a∫

−a
e−ikxf(x)dx. (2.12.106)
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In view of the Fourier transform of (2.12.102), the bounded solution of
(2.12.104) is

Ψ(k, y)= (A+B|k|y) exp(−|k|y), (2.12.107)

whereA andB can be determined from (2.12.105ab) so thatA=B= (ik)−1F (k).
Consequently, the solution (2.12.107) becomes

Ψ(k, y)= (ik)−1(1 + |k|y)F (k) exp(−|k|y). (2.12.108)

The inverse Fourier transform gives the formal solution

ψ(x, y) =
1√
2π

∞∫

−∞
F (k)G(k) exp(ikx)dk, (2.12.109)

where
G(k) = (ik)−1(1 + |k|y) exp(−|k|y)

so that

g(x) = F−1{G(k)}=F−1{(ik)−1 exp(−|k|y)}
+yF−1{(ik)−1|k| exp(−|k|y)}

= F−1
s {k−1 exp(−ky)}+ yF−1

s {e−ky},
which is, by (2.13.7) and (2.13.8),

=

√
2

π
tan−1

(
x

y

)
+

√
2

π

xy

(x2 + y2)
. (2.12.110)

Using the Convolution Theorem 2.5.5 in (2.12.109) gives the final solution

ψ(x, y) =
1

π

∞∫

−∞
f(x− ξ)

[
tan−1

(
ξ

y

)
+

yξ

ξ2 + y2

]
dξ. (2.12.111)

In particular, if f(x) = δ(x), then solution (2.12.111) becomes

ψ(x, y) =
1

π

[
tan−1

(
x

y

)
+

xy

x2 + y2

]
. (2.12.112)

The velocity fields u and υ can be determined from (2.12.112).

Example 2.12.12 (Biharmonic Equation in Elasticity).
We derive the biharmonic equation in elasticity from the two-dimensional
equilibrium equations and the compatibility condition. In two-dimensional
elastic medium, the strain components exx, exy, eyy in terms of the displace-
ment functions (u, υ, 0) are

exx=
∂u

∂x
, eyy =

∂υ

∂y
, exy =

1

2

(
∂u

∂y
+
∂υ

∂x

)
. (2.12.113)
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Differentiating these results gives the compatibility condition

∂2exx
∂y2

+
∂2eyy
∂x2

=2
∂2exy
∂x∂y

. (2.12.114)

In terms of the Poisson ratio ν and Young’s modulus E of the elastic ma-
terial, the strain component in the z direction is expressed in terms of stress
components

Eezz = σzz − ν(σxx + σyy). (2.12.115)

In the case of plane strain, ezz =0, so that

σzz = ν(σxx + σyy). (2.12.116)

Substituting this result in other stress-strain relations, we obtain the strain
components exx, exy, eyy that are related to stress components σxx, σxy, σyy
by

Eexx = σxx − ν(σyy + σzz) = (1− ν2)σxx − ν(1 + ν)σyy , (2.12.117)

Eeyy = σyy − ν(σxx + σzz) = (1− ν2)σyy − ν(1 + ν)σxx, (2.12.118)

Eexy = (1 + ν)σxy. (2.12.119)

Putting (2.12.117)–(2.12.119) into (2.12.114) gives

∂2

∂y2
[σxx − ν(σyy + σzz)] +

∂2

∂x2
[σyy − ν(σxx + σzz)]

= 2(1 + ν)
∂2σxy
∂x∂y

. (2.12.120)

The basic differential equations for the stress components σxx, σyy, σxy in
the medium under the action of body forces X and Y are

∂σxx
∂x

+
∂σxy
∂y

+ ρX = ρ
∂2u

∂t2
, (2.12.121)

∂σxy
∂x

+
∂σyy
∂y

+ ρY = ρ
∂2υ

∂t2
, (2.12.122)

where ρ is the mass density of the elastic material.
The equilibrium equations follow from (2.12.121)–(2.12.122) in the absence

of the body forces (X = Y =0) as

∂

∂x
σxx +

∂

∂y
σxy =0, (2.12.123)

∂

∂x
σxy +

∂

∂y
σyy =0. (2.12.124)

It is obvious that the expressions

σxx =
∂2χ

∂y2
, σxy =− ∂2χ

∂x∂y
, σyy =

∂2χ

∂x2
(2.12.125)
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satisfy the equilibrium equations for any arbitrary function χ(x, y). Substi-
tuting from equations (2.12.125) into the compatibility condition (2.12.120),
we see that χ must satisfy the biharmonic equation

∂4χ

∂x4
+ 2

∂4χ

∂x2∂y2
+
∂4χ

∂y4
=0, (2.12.126)

which may be written symbolically as

∇4χ=0. (2.12.127)

The function χ was first introduced by Airy in 1862 and is known as the
Airy stress function.

We determine the stress distribution in a semi-infinite elastic medium boun-
ded by an infinite plane at x=0 due to an external pressure to its surface.
The x-axis is normal to this plane and assumed positive in the direction into
the medium. We assume that the external surface pressure p varies along the
surface so that the boundary conditions are

σxx =−p(y), σxy =0 on x=0 for all y in (−∞,∞). (2.12.128)

We derive solutions so that stress components σxx, σyy, and σxy all vanish
as x→∞.

In order to solve the biharmonic equation (2.12.127), we introduce the
Fourier transform χ̃(x, k) of the Airy stress function with respect to y so
that (2.12.127)–(2.12.128) reduce to

(
d2

dx2
− k2

)2

χ̃=0, (2.12.129)

k2χ̃(0, k)= p̃(k), (ik)

(
dχ̃

dx

)
x=0

=0, (2.12.130)

where p̃(k) =F{p(y)}. The bounded solution of the transformed problem is

χ̃(x, k) = (A+Bx) exp(−|k|x), (2.12.131)

where A and B are constants of integration to be determined from (2.12.130).
It turns out that A= p̃(k)/k2 and B= p̃(k)/|k| and hence, the solution be-
comes

χ̃(x, k) =
p̃(k)

k2
{1 + |k|x} exp(−|k|x). (2.12.132)

The inverse Fourier transform yields the formal solution

χ(x, y) =
1√
2π

∞∫

−∞

p̃(k)

k2
(1 + |k|x) exp(iky− |k|x)dk. (2.12.133)
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The stress components are obtained from (2.12.125) in the form

σxx(x, y) = − 1√
2π

∞∫

−∞
k2χ̃(x, k) exp(iky)dk, (2.12.134)

σxy(x, y) = − 1√
2π

∞∫

−∞
(ik)

(
dχ̃

dx

)
exp(iky)dk, (2.12.135)

σyy(x, y) =
1√
2π

∞∫

−∞

d2χ̃

dx2
exp(iky)dk, (2.12.136)

where χ̃(x, k) are given by (2.12.132). In particular, if p(y) =Pδ(y) so that

p̃(k) =P (2π)−
1
2 . Consequently, from (2.12.133)–(2.12.136) we obtain

χ(x, y) =
P

2π

∞∫

−∞
k−2(1 + |k|x) exp(iky − |k|x)dk

=
P

π

∞∫

0

k−2(1 + kx) cos ky exp(−kx)dk. (2.12.137)

σxx = −P
π

∞∫

0

(1 + kx)e−kx cos ky dk=− 2Px3

π(x2 + y2)2
. (2.12.138)

σxy = −Px
π

∞∫

0

k sin ky exp(−kx)dk=− 2Px2y

π(x2 + y2)2
. (2.12.139)

σyy = −P
π

∞∫

0

(1− kx) exp(−kx) cos ky dk=− 2Pxy2

π(x2 + y2)2
. (2.12.140)

Another physically realistic pressure distribution is

p(y)=PH(|a| − y), (2.12.141)

where P is a constant, so that

p̃(k) =

√
2

π

P

k
sin ak. (2.12.142)

Substituting this value for p̃(k) into (2.12.133)–(2.12.136), we obtain the in-
tegral expression for χ, σxx, σxy, and σyy.

It is noted here that if a point force of magnitude P0 acts at the origin
located on the boundary, then we put P =(P0/2a) in (2.12.142) and find

p̃(k) = lim
a→0

√
2

π

P0

2

(
sinak

ak

)
=

P0√
2π
. (2.12.143)
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Thus, the stress components can also be written in this case.

2.13 Fourier Cosine and Sine Transforms with Examples

The Fourier cosine integral formula (2.2.8) leads to the Fourier cosine trans-
form and its inverse defined by

Fc{f(x)}=Fc(k) =

√
2

π

∞∫

0

cos kx f(x)dx, (2.13.1)

F−1
c {Fc(k)}= f(x) =

√
2

π

∞∫

0

cos kxFc(k)dk, (2.13.2)

where Fc is the Fourier cosine transform operator and F−1
c is its inverse

operator.

Similarly, the Fourier sine integral formula (2.2.9) leads to the Fourier sine
transform and its inverse defined by

Fs{f(x)}=Fs(k) =

√
2

π

∞∫

0

sinkxf(x)dx, (2.13.3)

F−1
s {Fs(k)}= f(x) =

√
2

π

∞∫

0

sinkx Fs(k)dk, (2.13.4)

where Fs is the Fourier sine transform operator and F−1
s is its inverse.

Example 2.13.1 Show that

(a) Fc{e−ax}=
√

2

π

a

(a2 + k2)
, (a> 0). (2.13.5)

(b) Fs{e−ax}=
√

2

π

k

(a2 + k2)
, (a> 0). (2.13.6)
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We have

Fc{e−ax} =

√
2

π

∞∫

0

e−ax cos kx dx

=
1

2

√
2

π

∞∫

0

[e−(a−ik)x + e−(a+ik)x]dx

Fc{e−ax} =
1

2

√
2

π

[
1

a− ik
+

1

a+ ik

]
=

√
2

π

a

(a2 + k2)
.

The proof of the other result is similar and hence left to the reader.

Using the above results with the Fourier cosine and sine inverse transfor-
mations and an interchange of variables, we find that

Fc

{
1

(x2 + a2)

}
=

√
π

2

e−ak

a
,

Fs

{
x

(x2 + a2)

}
=

√
π

2
e−ak.

According to the Fourier cosine and sine inverse transformations, we write

e−ax =
2a

π

∞∫

0

cos kx

k2 + a2
dk=

2

π

∞∫

0

k sin kx

k2 + a2
dk, a> 0.

Interchanging x and k, these results become

e−ak =
2a

π

∞∫

0

cos kx

x2 + a2
dx=

2

π

∞∫

0

x sin kx

x2 + a2
dx.

Thus, it follows that

Fc

{
1

(x2 + a2)

}
=

√
2

π

∞∫

0

cos kx

x2 + a2
dx=

√
2

π

π

2a
e−ak =

√
π

2

e−ak

a
,

Fs

{
x

(x2 + a2)

}
=

√
2

π

∞∫

0

x sin kx

x2 + a2
dx=

√
2

π

π

2
e−ak =

√
π

2
e−ak.

Example 2.13.2 Show that

F−1
s

{
1

k
exp(−sk)

}
=

√
2

π
tan−1

(x
s

)
. (2.13.7)
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We have the standard definite integral

√
π

2
F−1
s {exp(−sk)}=

∞∫

0

exp(−sk) sin kx dk= x

s2 + x2
. (2.13.8)

Integrating both sides with respect to s from s to ∞ gives

∞∫

0

e−sk

k
sin kx dk =

∞∫

s

xds

x2 + s2
=
[
tan−1 s

x

]∞
s

=
π

2
− tan−1

( s
x

)
=tan−1

(x
s

)
. (2.13.9)

Thus,

F−1
s

{
1

k
exp(−sk)

}
=

√
2

π

∞∫

0

1

k
exp(−sk) sinxk dk

=

√
2

π
tan−1

(x
s

)
.

Example 2.13.3 Show that

Fs{erfc(ax)}=
√

2

π

1

k

[
1− exp

(
− k2

4a2

)]
. (2.13.10)

We have

Fs{erfc(ax)} =

√
2

π

∞∫

0

erfc(ax) sin kx dx

=
2
√
2

π

∞∫

0

sin kx dx

∞∫

ax

e−t
2

dt.

Interchanging the order of integration, we obtain

Fs{erf(ax)} =
2
√
2

π

∞∫

0

exp(−t2)dt
t/a∫

0

sinkx dx

=
2
√
2

πk

∞∫

0

exp(−t2)
{
1− cos

(
kt

a

)}
dt

=
2
√
2

πk

[√
π

2
−

√
π

2
exp

(
− k2

4a2

)]
.
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Thus,

Fs{erfc(ax)}=
√

2

π

1

k

[
1− exp

(
− k2

4a2

)]
.

2.14 Properties of Fourier Cosine and Sine Transforms

THEOREM 2.14.1 If Fc{f(x)}=Fc(k) and Fs{f(x)}=Fs(k), then

Fc{f(ax)}= 1

a
Fc

(
k

a

)
, a > 0. (2.14.1)

Fs{f(ax)}= 1

a
Fs

(
k

a

)
, a > 0. (2.14.2)

Under appropriate conditions, the following properties also hold:

Fc{f ′(x)} = k Fs(k)−
√

2

π
f(0), (2.14.3)

Fc{f ′′(x)} = −k2 Fc(k)−
√

2

π
f ′(0), (2.14.4)

Fs{f ′(x)} = −k Fc(k), (2.14.5)

Fs{f ′′(x)} = −k2 Fs(k) +
√

2

π
k f(0). (2.14.6)

These results can be generalized for the cosine and sine transforms of higher-
order derivatives of a function. They are left as exercises.

THEOREM 2.14.2 (Convolution Theorem for the Fourier Cosine Trans-
form).
If Fc{f(x)}=Fc(k) and Fc{g(x)}=Gc(k), then

F−1
c {Fc(k)Gc(k)}= 1√

2π

∞∫

0

f(ξ)[g(x+ ξ) + g(|x− ξ|)]dξ. (2.14.7)

Or, equivalently,

∞∫

0

Fc(k)Gc(k) cos kx dk=
1

2

∞∫

0

f(ξ)[g(x+ ξ) + g(|x− ξ|)]dξ. (2.14.8)
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PROOF Using the definition of the inverse Fourier cosine transform, we
have

F−1
c {Fc(k)Gc(k)} =

√
2

π

∞∫

0

Fc(k)Gc(k) cos kx dk

=

(
2

π

) ∞∫

0

Gc(k) cos kx dk

∞∫

0

f(ξ) cos kξ dξ.

Hence,

F−1
c {Fc(k)Gc(k)}=

(
2

π

) ∞∫

0

f(ξ)dξ

∞∫

0

cos kx cos kξ Gc(k)dk

=
1

2

√
2

π

∞∫

0

f(ξ)dξ

√
2

π

∞∫

0

[cos k(x+ ξ) + cos k(|x− ξ|)]Gc(k)dk

=
1√
2π

∞∫

0

f(ξ)[g(x+ ξ) + g(|x− ξ|)]dξ,

in which the definition of the inverse Fourier cosine transform is used. This
proves (2.14.7).

It also follows from the proof of Theorem 2.14.2 that

∞∫

0

Fc(k)Gc(k) cos kx dk=
1

2

∞∫

0

f(ξ)[g(x+ ξ) + g(|x− ξ|)]dξ.

This proves result (2.14.8).
Putting x=0 in (2.14.8), we obtain

∞∫

0

Fc(k)Gc(k)dk=

∞∫

0

f(ξ)g(ξ)dξ =

∞∫

0

f(x)g(x)dx.

Substituting g(x) = f(x) gives, since Gc(k) =Fc(k),

∞∫

0

|Fc(k)|2dk=
∞∫

0

|f(x)|2dx. (2.14.9)

This is the Parseval relation for the Fourier cosine transform.
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Similarly, we obtain

∞∫

0

Fs(k)Gs(k) cos kx dk

=

√
2

π

∞∫

0

Gs(k) cos kx dk

∞∫

0

f(ξ) sin kξ dξ

which is, by interchanging the order of integration,

=

√
2

π

∞∫

0

f(ξ)dξ

∞∫

0

Gs(k) sin kξ cos kx dk

=
1

2

∞∫

0

f(ξ)dξ

√
2

π

∞∫

0

Gs(k)[sin k(ξ + x) + sin k(ξ − x)]dk

=
1

2

∞∫

0

f(ξ)[g(ξ + x) + g(ξ − x)]dξ,

in which the inverse Fourier sine transform is used. Thus, we find

∞∫

0

Fs(k)Gs(k) cos kx dk=
1

2

∞∫

0

f(ξ)[g(ξ + x) + g(ξ − x)]dξ. (2.14.10)

Or, equivalently,

F−1
c {Fs(k)Gs(k)}= 1√

2π

∞∫

0

f(ξ)[g(ξ + x) + g(ξ − x)]dξ. (2.14.11)

Result (2.14.10) or (2.14.11) is also called the Convolution Theorem of the
Fourier cosine transform.

Putting x=0 in (2.14.10) gives

∞∫

0

Fs(k)Gs(k)dk=

∞∫

0

f(ξ)g(ξ)dξ=

∞∫

0

f(x)g(x)dx.

Replacing g(x) by f(x) gives the Parseval relation for the Fourier sine trans-
form ∞∫

0

|Fs(k)|2dk=
∞∫

0

|f(x)|2dx. (2.14.12)
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2.15 Applications of Fourier Cosine and Sine
Transforms to Partial Differential Equations

Example 2.15.1 (One-Dimensional Diffusion Equation on a Half Line).
Consider the initial-boundary value problem for the one-dimensional diffusion
equation in 0<x<∞ with no sources or sinks:

∂u

∂t
= κ

∂2u

∂x2
, 0<x<∞, t > 0, (2.15.1)

where κ is a constant, with the initial condition

u(x, 0)= 0, 0<x<∞, (2.15.2)

and the boundary conditions

(a) u(0, t)= f(t), t≥ 0, u(x, t)→ 0 as x→∞, (2.15.3)

or,
(b) ux(0, t) = f(t), t≥ 0, u(x, t)→ 0 as x→∞. (2.15.4)

This problem with the boundary conditions (2.15.3) is solved by using the
Fourier sine transform

Us(k, t) =

√
2

π

∞∫

0

sin kx u(x, t) dx.

Application of the Fourier sine transform gives

dUs
dt

= −κ k2Us(k, t) +
√

2

π
κ k f(t), (2.15.5)

Us(k, 0) = 0. (2.15.6)

The bounded solution of this differential system with Us(k, 0)= 0 is

Us(k, t) =

√
2

π
κ k

t∫

0

f(τ) exp[−κ(t− τ)k2] dτ. (2.15.7)

The inverse transform gives the solution

u(x, t) =

√
2

π
κ

t∫

0

f(τ)F−1
s {k exp[−κ(t− τ)k2]}dτ

=
x√
4πκ

t∫

0

f(τ) exp

[
− x2

4κ(t− τ)

]
dτ

(t− τ)3/2
(2.15.8)



Fourier Transforms and Their Applications 105

in which F−1
s {k exp(−tκk2)}= x

2
√
2
· exp(−x2/4κt)

(κt)3/2
is used.

In particular, f(t) =T0 = constant, (2.15.7) reduces to

Us(k, t) =

√
2

π

T0
k
[1− exp(−κ t k2)]. (2.15.9)

Inversion gives the solution

u(x, t) =

(
2T0
π

) ∞∫

0

sin kx

k
[1− exp(−κ t k2)]dk. (2.15.10)

Making use of the integral

∞∫

0

e−k
2a2 sin kx

k
dk=

π

2
erf

( x

2a

)
, (2.15.11)

the solution becomes

u(x, t) =
2T0
π

[
π

2
− π

2
erf

(
x

2
√
κt

)]

= T0 erfc

(
x

2
√
κt

)
, (2.15.12)

where the error function, erf (x) is defined by

erf (x) =
2√
π

x∫

0

e−α
2

dα, (2.15.13)

so that

erf (0)= 0, erf (∞) =
2√
π

∞∫

0

e−α
2

dα=1, and erf (−x) =−erf (x),

and the complementary error function, erfc(x) is defined by

erfc(x) = 1− erf (x) =
2√
π

∞∫

x

e−α
2

dα, (2.15.14)

so that
erfc(x) = 1− erf(x), erfc(0)= 1, erfc(∞) = 0,

and
erfc(−x) = 1− erf (−x) = 1 + erf (x) = 2− erfc(x).



106 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

Equation (2.15.1) with boundary condition (2.15.4) is solved by the Fourier
cosine transform

Uc(k, t) =

√
2

π

∞∫

0

cos kxu(x, t)dx.

Application of this transform to (2.15.1) gives

dUc
dt

+ κk2Uc=−
√

2

π
κf(t). (2.15.15)

The solution of (2.15.15) with Uc(k, 0)= 0 is

Uc(k, t) =−
√

2

π
κ

t∫

0

f(τ) exp[−k2κ(t− τ)]dτ. (2.15.16)

Since

F−1
c {exp(−tκk2)}= 1√

2κt
exp

(
− x2

4κt

)
, (2.15.17)

the inverse Fourier cosine transform gives the final form of the solution

u(x, t) =−
√
κ

π

t∫

0

f(τ)√
t− τ

exp

[
− x2

4κ(t− τ)

]
dτ. (2.15.18)

Example 2.15.2 (The Laplace Equation in the Quarter Plane).
Solve the Laplace equation

uxx + uyy =0, 0<x, y <∞, (2.15.19)

with the boundary conditions

u(0, y)= a, u(x, 0)= 0, (2.15.20a)

∇u→ 0 as r=
√
x2 + y2 →∞, (2.15.20b)

where a is a constant.
We apply the Fourier sine transform with respect to x to find

d2Us
dy2

− k2 Us +

√
2

π
ka=0.

The solution of this inhomogeneous equation is

Us(k, y) =Ae−ky +

√
2

π
· a
k
,
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where A is a constant to be determined from Us(k, 0)= 0. Consequently,

Us(k, y)=
a

k

√
2

π
(1− e−ky). (2.15.21)

The inverse transformation gives the formal solution

u(x, y) =
2a

π

∞∫

0

1

k
(1− e−ky) sin kx dk

Or,

u(x, y) =
2a

π

⎡
⎣

∞∫

0

sin kx

k
dk −

∞∫

0

1

k
e−ky sin kx dk

⎤
⎦

= a− 2a

π

(π
2
− tan−1 y

x

)
=

2a

π
tan−1

(y
x

)
, (2.15.22)

in which (2.13.9) is used.

Example 2.15.3 (The Laplace Equation in a Semi-Infinite Strip with the
Dirichlet Data).

Solve the Laplace equation

uxx + uyy =0, 0<x<∞, 0<y< b, (2.15.23)

with the boundary conditions

u(0, y) = 0, u(x, y)→ 0 as x→∞ for 0<y< b (2.15.24)

u(x, b) = 0, u(x, 0)= f(x) for 0<x<∞. (2.15.25)

In view of the Dirichlet data, the Fourier sine transform with respect to
x can be used to solve this problem. Applying the Fourier sine transform to
(2.15.23)–(2.15.25) gives

d2 Us
dy2

− k2Us=0, (2.15.26)

Us(k, b) = 0, Us(k, 0)=Fs(k). (2.15.27)

The solution of (2.15.26) with (2.15.27) is

Us(k, y) =Fs(k)
sinh[k(b− y)]

sinh kb
. (2.15.28)
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The inverse Fourier sine transform gives the formal solution

u(x, y) =

√
2

π

∞∫

0

Fs(k)
sinh[k(b− y)]

sinh kb
sin kx dk

=
2

π

∞∫

0

⎡
⎣

∞∫

0

f(l) sinkl dl

⎤
⎦ sinh[k(b− y)]

sinh kb
sin kx dk. (2.15.29)

In the limit as kb→∞, sinh[k(b−y)]sinh kb ∼ exp(−ky), hence the above problem re-
duces to the corresponding problem in the quarter plane, 0<x<∞, 0<y<
∞. Thus, solution (2.15.29) becomes

u(x, y) =
2

π

∞∫

0

f(l)dl

∞∫

0

sin kl sin kx exp(−ky)dk

=
1

π

∞∫

0

f(l)dl

∞∫

0

{cos k(x− l)− cos k(x+ l)} exp(−ky)dk

=
1

π

∞∫

0

f(l)

[
y

(x− l)2 + y2
− y

(x+ l)2 + y2

]
dl. (2.15.30)

This is the exact integral solution of the problem. If f(x) is an odd function
of x, then solution (2.15.30) reduces to the solution (2.12.10) of the same
problem in the half plane.

2.16 Evaluation of Definite Integrals

The Fourier transform can be employed to evaluate certain definite integrals.
Although the method of evaluation may not be very rigorous, it is quite simple
and straightforward. The method can be illustrated by means of examples.

Example 2.16.1 Evaluate the integral

I(a, b) =

∞∫

−∞

dx

(x2 + a2)(x2 + b2)
, a> 0, b> 0. (2.16.1)

If we write f(x) = 1
x2+a2 and g(x) = 1

x2+b2 so that F (k) =
√

π
2
e−a|k|
a , G(k) =
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√
π
2
e−b|k|
b and use the formula (2.5.19), we obtain

∞∫

−∞
f(x)g(−x)dx =

∞∫

−∞
F (k)G(k)dk

=
π

2ab

∞∫

−∞
e−|k|(a+b)dk

=
π

ab

∞∫

0

e−(a+b)kdk=
π

ab(a+ b)
. (2.16.2)

This is the desired result. Further

∞∫

0

dx

(x2 + a2)(x2 + b2)
=

π

2ab(a+ b)
. (2.16.3)

Example 2.16.2 Show that
∞∫

0

x−pdx
(a2 + x2)

=
π

2
a−(p+1) sec

(πp
2

)
. (2.16.4)

We write

f(x) = e−ax so that Fc(k) =

√
2

π

a

(a2 + k2)
.

g(x) = xp−1 so that Gc(k) =

√
2

π
k−pΓ(p) cos

(πp
2

)
.

Using Parseval’s result for the Fourier cosine transform gives

∞∫

0

Fc(k)Gc(k)dk=

∞∫

0

f(x)g(x)dx.

Or,

2a

π
cos

(πp
2

)
Γ(p)

∞∫

0

k−pdk
k2 + a2

=

∞∫

0

xp−1e−axdx

=
1

ap

∞∫

0

e−ttp−1dt =
Γ(p)

ap
, (ax= t).
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Thus,
∞∫

0

k−pdk
a2 + k2

=
π

2 ap+1
sec

(πp
2

)
.

Example 2.16.3 If a> 0, b > 0, show that
∞∫

0

x2 dx

(a2 + x2)(b2 + x2)
=

π

2(a+ b)
. (2.16.5)

We consider

Fs{e−ax}=
√

2

π

k

k2 + a2
=Fs(k)

Fs{e−bx}=
√

2

π

k

k2 + b2
=Gs(k).

Then the Convolution Theorem for the Fourier cosine transform gives

∞∫

0

Fs(k)Gs(k) cos kx dk=
1

2

∞∫

0

g(ξ)[f(ξ + x) + f(ξ − x)]dξ.

Putting x=0 gives

∞∫

0

Fs(k)Gs(k)dk=

∞∫

0

g(ξ)f(ξ)dξ,

or,
∞∫

0

k2 dk

(k2 + a2)(k2 + b2)
=
π

2

∞∫

0

e−(a+b)ξdξ=
π

2(a+ b)
.

Example 2.16.4 Show that
∞∫

0

x2dx

(x2 + a2)4
=

π

(2a)5
, a > 0. (2.16.6)

We write f(x) = 1
2(x2+a2) so that f ′(x) =− x

(x2+a2)2 , and F{f(x)}=F (k) =√
π
2

(
1
2a

)
exp(−a|k|).
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Making reference to the Parseval relation (2.4.19), we obtain

∞∫

−∞
|f ′(x)|2dx=

∞∫

−∞
|F{f ′(x)}|2dk=

∞∫

−∞
|(ik)F{f(x)}|2dk.

Thus,

∞∫

−∞

x2

(x2 + a2)4
dx =

π

2

∞∫

−∞
k2 · 1

(2a)2
exp(−2a|k|)dk

=
π

(2a)2

∞∫

0

k2 exp(−2ak)dk=
2π

(2a)5
.

This gives the desired result.

Example 2.16.5 Show that
∞∫

−∞
e−(a+b)x2

dx=

√
π

a+ b
, a> 0, b > 0. (2.16.7)

We write f(x) = e−ax
2

and g(x) = e−bx
2

so that F (k) = 1√
2a
e−

k2

4a , and G(k) =

1√
2b
e−

k2

4b and then use the formula (2.5.19) to obtain

∞∫

−∞
f(x)g(−x)dx =

1

2
√
ab

∞∫

−∞
e−

k2

4 ( 1
a+ 1

b )dk

=
1

2
√
ab

∞∫

−∞
e−ck

2

dk, c=
1

4
(
1

a
+

1

b
)

=
1

2
√
ab

√
π

c
=

√
π

a+ b
.

2.17 Applications of Fourier Transforms
in Mathematical Statistics

In probability theory and mathematical statistics, the characteristic function
of a random variable is defined by the Fourier transform or by the Fourier-
Stieltjes transform of the distribution function of a random variable. Many
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