
What is diffraction Diffraction?
 

Light wave while passing through a small slit, if the observations are made carefully then one
finds that if the width of the slit is not very large compared to the wavelength, then the light intensity in
the geometrical  dark region is  not uniform and there is  also some intensity inside the geometrical
shadow. Further, if the width of the slit is made smaller, larger amounts of energy reach the geometrical
shadow. This spreading-out of a wave when it passes through a narrow opening is usually referred to as
diffraction and the intensity distribution on the screen is known as the diffraction pattern. 

What is Fraunhofer and Fresnel’s class of diffractions?

In the Fresnel class of diffraction the source of light and the screen are, in general, at a finite distance
from the diffracting aperture. In the Fraunhofer class of diffraction, the source and the screen are at
infinite  distances from the aperture.

Find the intensity distribution due to a single slit. 

We will first study the Fraunhofer diffraction pattern produced by an infinitely long slit of width b. A
plane wave is assumed to fall normally on the slit and we wish to calculate the intensity distribution on
the focal plane of the lens L [see Fig. below]. 

Fig- 1: Diffraction in a single slit.

We assume that the slit consists of a large number of equally spaced point sources and that each point
on the slit is a source of Huygens' secondary wavelets which  interfere with the wavelets emanating
from  other  points.  Let  the  point  sources  be  at  A1,  A2,  A3,...  and  let  the  distance  between  two
consecutive points be Δ [see Fig. 1.(b)]. Thus, if the number of point sources be n, then, ]. Thus, if the number of point sources be n, then, 

b = (n – 1)]. Thus, if the number of point sources be n, then,   Δ                    ---------  (1)]. Thus, if the number of point sources be n, then, 
We will now calculate the resultant field produced by these n sources at the point P, P being an arbitrary
point (on the focal plane of the lens)]. Thus, if the number of point sources be n, then,  receiving parallel rays making an angle θ with the normal to the
slit [see Fig. 1.(b)]. Thus, if the number of point sources be n, then, ]. Since the slit actually consists of a continuous distribution of sources, we will, in
the final expression, let n go to infinity and Δ go to zero such that nΔ tends to b. Now, at the point P, the
amplitudes of the disturbances reaching from A1, A2)]. Thus, if the number of point sources be n, then, ... will be very nearly the same because the point P
is at a distance which is very large in comparison to b. However, because of even slightly different path
lengths to the point P, the field produced by A1 will differ in phase from the field produced by A2.



For an incident plane wave, the points A1, A2,... are in phase and, therefore, the additional path traversed
by the  disturbance emanating from the point A2 will be A2A2' where A2' is the foot of the perpendicular
drawn from A1 on A2B2. This follows from the fact that the optical paths A1B1P and A2’B2P are the
same. If the diffracted rays make an angle θ with the normal to the slit then the path difference would
be,
A2A2’ = Δ sinθ
The corresponding phase difference, ϕ, would be given by
ϕ = (2 п/λ) . Δ sinθλ)]. Thus, if the number of point sources be n, then,  . Δ sinθ -------- (2)]. Thus, if the number of point sources be n, then, 

Thus, if the field at the point P due to the disturbance emanating from the point A1 is a cos ωt,t,
then the field due to the disturbance emanating from A2 would be a cos (ωt,t - ϕ)]. Thus, if the number of point sources be n, then, . Now the difference in
the phases of the disturbance reaching from the points A2 and A3 will also be ϕ and thus the resultant
field at the point P would be given by
E = a[cos ωt,t + cos ( ωt,t - ϕ)]. Thus, if the number of point sources be n, then,  +...+ cos ( ωt,t - (n - 1)]. Thus, if the number of point sources be n, then, ϕ)]. Thus, if the number of point sources be n, then, ] -------- (3)]. Thus, if the number of point sources be n, then, 
Thus, 
E = Eθ cos [ ωt,t - (1/λ) . Δ sinθ2)]. Thus, if the number of point sources be n, then, (n – 1)]. Thus, if the number of point sources be n, then,  ϕ] -------- (4)]. Thus, if the number of point sources be n, then, 
where Eθ  is given by,  Eθ  = a Sin(n ϕ/λ) . Δ sinθ2)]. Thus, if the number of point sources be n, then,  /λ) . Δ sinθ Sin( ϕ/λ) . Δ sinθ2)]. Thus, if the number of point sources be n, then, --------- (5)]. Thus, if the number of point sources be n, then, 
In the limit of n → ∞ and  Δ -> 0 in such a way that n Δ —> b,
we have,

n ϕ/λ) . Δ sinθ2 = (2 п/λ) . Δ sinθλ)]. Thus, if the number of point sources be n, then,  n Δ sinθ —> (п/λ) . Δ sinθλ)]. Thus, if the number of point sources be n, then,  b sinθ -------- (6)]. Thus, if the number of point sources be n, then, 
Further,

 ϕ = (2 п/λ) . Δ sinθλ)]. Thus, if the number of point sources be n, then,  Δ sinθ = (2 п/λ) . Δ sinθλ)]. Thus, if the number of point sources be n, then,  b sinθ . 1/λ) . Δ sinθn -------- (7)]. Thus, if the number of point sources be n, then, 
would tend to zero and we may, therefore, write,

Eθ = na Sin (пb sinθ /λ) . Δ sinθλ)]. Thus, if the number of point sources be n, then,  /λ) . Δ sinθ (пb sinθ /λ) . Δ sinθλ)]. Thus, if the number of point sources be n, then, 
    = A Sinβ /λ) . Δ sinθ β

where β =  (пb sinθ /λ) . Δ sinθλ)]. Thus, if the number of point sources be n, then, 
Thus,
E=A Sinβ /λ) . Δ sinθ β Cos ( ωt,t – β)]. Thus, if the number of point sources be n, then,  -------- (8)]. Thus, if the number of point sources be n, then, 
The corresponding intensity distribution is given by
I = I0  Sin2β /λ) . Δ sinθ β2

where I0  represents the intensity at θ = 0

Found an intensity distribution due to Diffraction in Double Slit.

The Fraunhofer diffraction pattern produced by two parallel  slits (each of width b)]. Thus, if the number of point sources be n, then,  separated by a
distance  d.  We  would  find  that  the  resultant  intensity  distribution  is  a  product  of  the  single-slit
diffraction pattern and the interference pattern produced by two point sources  separated by a distance
d.
In order to calculate the diffraction pattern we use a method similar to that used for the case of a single
slit and assume that the slits consist of a large number of equally spaced point sources and that each
point on the slit is a source of Huygens' secondary wavelets. Let the point sources be at Ay, A2, A3>...
(in the first slit)]. Thus, if the number of point sources be n, then,  and at By, B2, B3>... (in the second slit)]. Thus, if the number of point sources be n, then,  [see Fig. 18.29]. As before, we assume that the
distance between two consecutive points in either of the slits is A. If the diffracted rays make an angle 6
with the normal to the plane of the slits, then the path difference between the disturbances reaching the
point P from two consecutive points in a slit will be A sin 6. The field produced by the first slit at the
point P will, therefore, be given by [see Eq. (2)]. Thus, if the number of point sources be n, then, ] . 
E1 = A Sinβ /λ) . Δ sinθ β Cos ( ωt,t – β)]. Thus, if the number of point sources be n, then,  
Similarly, the second slit will produce a field
E2 = A Sinβ /λ) . Δ sinθ β Cos ( ωt,t – β - ϕ1)]. Thus, if the number of point sources be n, then,  
at the point P, where



Fig.2 – Fraunhofer Diffraction in a double slit

ϕ1 = (2 п/λ) . Δ sinθλ)]. Thus, if the number of point sources be n, then,  d sinθ
represents the phase difference between the disturbances (reaching the point P)]. Thus, if the number of point sources be n, then,  from two corresponding
points on the slits; by corresponding points we imply pairs of points like (Ay, By)]. Thus, if the number of point sources be n, then, , (A2, B2)]. Thus, if the number of point sources be n, then, ,... which
are separated by a distance d. Hence the resultant field will be
E = E1 + E2 
   = A Sinβ /λ) . Δ sinθ β  [ Cos ( ωt,t – β )]. Thus, if the number of point sources be n, then,   + Cos ( ωt,t – β - ϕ1)]. Thus, if the number of point sources be n, then,  ] 
which represents the interference of two waves, each of amplitude A Sinβ /λ) . Δ sinθ β and differing in phase by
ϕ1. The above equation can be rewritten in the form
E = A Sinβ /λ) . Δ sinθ β . Cos γ . Cos ( ωt,t – ½.β – ½.ϕ1)]. Thus, if the number of point sources be n, then,  ] 
where γ  =  ½.ϕ1  = (п/λ) . Δ sinθλ)]. Thus, if the number of point sources be n, then,  d sinθ
The intensity distribution will be of the form,

I = 4 I0  Sin2β /λ) . Δ sinθ β2  . Cos2 γ  
where I0  Sin2β /λ) . Δ sinθ β2   represents the intensity distribution produced by one of the slits. As can be seen,
the intensity distribution is a product of two terms; the first term (Sin2β /λ) . Δ sinθ β2 )]. Thus, if the number of point sources be n, then,  represents the diffraction
pattern produced by a single slit of width b and the second term (Cos2 γ )]. Thus, if the number of point sources be n, then,  represents the interference
pattern produced by two point sources separated by a distance d. Indeed, if the slit widths are very
small (so that there is almost no variation of the Sin2β /λ) . Δ sinθ β2 term with θ)]. Thus, if the number of point sources be n, then,  then one simply obtains the
Young's interference pattern
The intensity distribution pattern due to double slit is shown below,

Fig.3 -  Intensity distribution pattern due to double slit



Find an intensity distribution due to diffraction grating. 

The  diffraction  pattern  produced  by  N  parallel  slits,  each  of  width  b;  the  distance  between  two
consecutive slits is assumed to be d. is calculated below, 
As before, we assume that each slit consists of n equally spaced point sources with spacing Δ. Thus the
field at an arbitrary point P will essentially be a sum of N terms:

E  = A Sinβ /λ) . Δ sinθ β  [ Cos ( ωt,t – β )]. Thus, if the number of point sources be n, then,   + Cos ( ωt,t – β - ϕ1)]. Thus, if the number of point sources be n, then,   + Cos ( ωt,t – β - (n-1)]. Thus, if the number of point sources be n, then, ϕ1)]. Thus, if the number of point sources be n, then, ] 
where the first term represents the amplitude produced by the first slit, the second term by the second
slit, etc. , the above equation can be rewritten as, 

E =  A Sinβ /λ) . Δ sinθ β  . Sin nγ /λ) . Δ sinθγ Cos[ ωt,t – β – (n-1)]. Thus, if the number of point sources be n, then, /λ) . Δ sinθ2 . Φ1 ]
The corresponding intensity distribution will be,

I = I0 Sin2β /λ) . Δ sinθ β2  . Sin2 Nγ  /λ) . Δ sinθ Sin2γ 
where  I0  Sin2β /λ) . Δ sinθ β2  represents the intensity distribution produced by a single slit. As can be seen, the
intensity distribution is a product of two terms; the first term Sin2β /λ) . Δ sinθ β2 represents the diffraction pattern
produced by a  single  slit  and  the  second term Sin2Nγ  /λ) . Δ sinθ  Sin2γ  represents  the  interference  pattern
produced by N equally spaced point sources. 

Fig. 5 - The intensity distribution corresponding to the four-slit Fraunhofer diffraction pattern as
predicted by Eq. (50)]. Thus, if the number of point sources be n, then,  corresponding to b = 0.0044 cm, d = 0.0132 cm and A, = 6.328 x 10"5 cm. The  
principle maxima occur at 9 = 0.275°, 0.55°, 0.82°, 1.1°, .... Notice the (almost)]. Thus, if the number of point sources be n, then,  absent third order.

Define the resolving power of a diffraction grating and find an expression of it.

In the case of a grating the resolving power refers to the power of distinguishing two nearby spectral
lines and is  defined by the following equation:
R =  λ /λ) . Δ sinθ Δλ 
where Δλ is the separation of two wavelengths which the grating can just resolve; the smaller the value
of  Δλ, the larger the resolving power.
The Rayleigh criterion can again be used to define the limit of resolution. According to this criterion,  if
the principal maximum corresponding to the wavelength  λ + Δλ  falls on the first minimum (on the
either side of the principal maximum)]. Thus, if the number of point sources be n, then,  of the wavelength  λ, then the two wavelengths λ and  λ + Δλ  are
said to be just resolved. If this common diffraction angle is represented



by θ and if we are looking at the mth order spectrum, then the two wavelengths λ and  λ + Δλ will be
just resolved if the following two equations are simultaneously satisfied:

d Sinθ = m(λ + Δλ)]. Thus, if the number of point sources be n, then,  
and d Sinθ = mλ + λ/λ) . Δ sinθN 
Thus,

R =    λ /λ) . Δ sinθ Δλ = m.N
which implies that the resolving power depends on the total number of lines in the grating—obviously
on  only  those  lines  which  are  exposed  to  the  incident  beam.  Further,  the  resolving  power  is
proportional to the order of the spectrum. 
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