What is diffraction Diffraction?

Light wave while passing through a small slit, if the observations are made carefully then one
finds that if the width of the slit is not very large compared to the wavelength, then the light intensity in
the geometrical dark region is not uniform and there is also some intensity inside the geometrical
shadow. Further, if the width of the slit is made smaller, larger amounts of energy reach the geometrical
shadow. This spreading-out of a wave when it passes through a narrow opening is usually referred to as
diffraction and the intensity distribution on the screen is known as the diffraction pattern.

What is Fraunhofer and Fresnel’s class of diffractions?

In the Fresnel class of diffraction the source of light and the screen are, in general, at a finite distance
from the diffracting aperture. In the Fraunhofer class of diffraction, the source and the screen are at
infinite distances from the aperture.

Find the intensity distribution due to a single slit.

We will first study the Fraunhofer diffraction pattern produced by an infinitely long slit of width b. A
plane wave is assumed to fall normally on the slit and we wish to calculate the intensity distribution on
the focal plane of the lens L [see Fig. below].
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Fig- 1: Diffraction in a single slit.

We assume that the slit consists of a large number of equally spaced point sources and that each point
on the slit is a source of Huygens' secondary wavelets which interfere with the wavelets emanating
from other points. Let the point sources be at A;, A2, A3,... and let the distance between two
consecutive points be A [see Fig. 1.(b)]. Thus, if the number of point sources be n, then,
b=m-1)A @)

We will now calculate the resultant field produced by these n sources at the point P, P being an arbitrary
point (on the focal plane of the lens) receiving parallel rays making an angle 6 with the normal to the
slit [see Fig. 1.(b)]. Since the slit actually consists of a continuous distribution of sources, we will, in
the final expression, let n go to infinity and A go to zero such that nA tends to b. Now, at the point P, the
amplitudes of the disturbances reaching from A;, A2)... will be very nearly the same because the point P
is at a distance which is very large in comparison to b. However, because of even slightly different path
lengths to the point P, the field produced by A; will differ in phase from the field produced by A2.



For an incident plane wave, the points A;, A,,... are in phase and, therefore, the additional path traversed
by the disturbance emanating from the point A, will be A,A," where A,' is the foot of the perpendicular
drawn from A; on A;B,. This follows from the fact that the optical paths A;B;P and A,’B,P are the
same. If the diffracted rays make an angle 8 with the normal to the slit then the path difference would
be,

A2A2’ = Asinf

The corresponding phase difference, ¢, would be given by

6=Qn/A).Asin8 - @)

Thus, if the field at the point P due to the disturbance emanating from the point A1 is a cos wt,
then the field due to the disturbance emanating from A2 would be a cos (ot - ¢). Now the difference in
the phases of the disturbance reaching from the points A2 and A3 will also be ¢ and thus the resultant
field at the point P would be given by

E =afcos wt + cos (wt-¢) +..+cos (wt-(n-1)p)]  --—-—---- (3)
Thus,
E=Escos[wt-(1/2)m-1) 0] = - 4)
where Ej is given by, Ey =a Sin(n ¢/2)/ Sin( ¢/2)  -—--—---- (5)
In the limit of n —» o and A -> 0 in such a way that n A—> b,
we have,
n¢/2=2n/A)nAsind —> (/A)bsin@ - (6)
Further,
d=Qn/A)Asinf=Q2n/A)bsin®.1/n - (7)

would tend to zero and we may, therefore, write,
Eq = na Sin (b sinB /A) / (b sinB /A)

=ASinB/p
where 3 = (mb sinf /A)
Thus,
E=ASinB/BCos(wt-P) - (8)

The corresponding intensity distribution is given by
I=1, Sin’B/p?
where I, represents the intensity at 6 = 0

Found an intensity distribution due to Diffraction in Double Slit.

The Fraunhofer diffraction pattern produced by two parallel slits (each of width b) separated by a
distance d. We would find that the resultant intensity distribution is a product of the single-slit
diffraction pattern and the interference pattern produced by two point sources separated by a distance
d.

In order to calculate the diffraction pattern we use a method similar to that used for the case of a single
slit and assume that the slits consist of a large number of equally spaced point sources and that each
point on the slit is a source of Huygens' secondary wavelets. Let the point sources be at Ay, A2, A3>...
(in the first slit) and at By, B2, B3>... (in the second slit) [see Fig. 18.29]. As before, we assume that the
distance between two consecutive points in either of the slits is A. If the diffracted rays make an angle 6
with the normal to the plane of the slits, then the path difference between the disturbances reaching the
point P from two consecutive points in a slit will be A sin 6. The field produced by the first slit at the
point P will, therefore, be given by [see Eq. (2)] .

E1=ASinf/ Cos (wt—f)

Similarly, the second slit will produce a field

E2=ASinf /B Cos (wt—f - ¢1)

at the point P, where



f= — f
Fig.2 — Fraunhofer Diffraction in a double slit

01- (2 1/A) d sinB
represents the phase difference between the disturbances (reaching the point P) from two corresponding
points on the slits; by corresponding points we imply pairs of points like (Ay, By), (A2, B2),... which
are separated by a distance d. Hence the resultant field will be
E=E1+E2

=ASinB/B [Cos(wt—fB) + Cos (wt—P-d1) ]
which represents the interference of two waves, each of amplitude A Sinf3 / § and differing in phase by
¢1. The above equation can be rewritten in the form
E=ASinB/B.Cosy. Cos (wt—%.p—-%.d1) ]
wherey = %.¢; - (1/A) d sinf
The intensity distribution will be of the form,

[=41, Sin’B/P* Cos’y

where I, Sin’B / B* represents the intensity distribution produced by one of the slits. As can be seen,
the intensity distribution is a product of two terms; the first term (Sin’B / B*) represents the diffraction
pattern produced by a single slit of width b and the second term (Cos® y ) represents the interference
pattern produced by two point sources separated by a distance d. Indeed, if the slit widths are very
small (so that there is almost no variation of the Sin’p / 3* term with 0) then one simply obtains the
Young's interference pattern
The intensity distribution pattern due to double slit is shown below,
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Fig.3 - Intensity distribution pattern due to double slit



Find an intensity distribution due to diffraction grating.

The diffraction pattern produced by N parallel slits, each of width b; the distance between two
consecutive slits is assumed to be d. is calculated below,
As before, we assume that each slit consists of n equally spaced point sources with spacing A. Thus the
field at an arbitrary point P will essentially be a sum of N terms:

E =ASinB/B [Cos(wt—p) +Cos(wt—pf-¢1) +Cos (wt—-(n-1)d1)]
where the first term represents the amplitude produced by the first slit, the second term by the second
slit, etc. , the above equation can be rewritten as,

E= ASin/f .Sinny/y Cos[ ot - —(n-1)/2 . ®, ]
The corresponding intensity distribution will be,

I1=1,Sin?B / B2 -Sin* Ny / Sin?y

where I, Sin’p / p? represents the intensity distribution produced by a single slit. As can be seen, the
intensity distribution is a product of two terms; the first term Sin*p / 3*represents the diffraction pattern
produced by a single slit and the second term Sin’Ny / Sin’y represents the interference pattern
produced by N equally spaced point sources.
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Fig. 5 - The intensity distribution corresponding to the four-slit Fraunhofer diffraction pattern as
predicted by Eq. (50) corresponding to b = 0.0044 cm, d = 0.0132 cm and A, = 6.328 x 10"5 cm. The
principle maxima occur at 9 = 0.275°, 0.55°, 0.82°, 1.1°, .... Notice the (almost) absent third order.

Define the resolving power of a diffraction grating and find an expression of it.

In the case of a grating the resolving power refers to the power of distinguishing two nearby spectral
lines and is defined by the following equation:

R= A/AA

where AA is the separation of two wavelengths which the grating can just resolve; the smaller the value
of AA, the larger the resolving power.

The Rayleigh criterion can again be used to define the limit of resolution. According to this criterion, if
the principal maximum corresponding to the wavelength A + AA falls on the first minimum (on the
either side of the principal maximum) of the wavelength A, then the two wavelengths A and A + AA are
said to be just resolved. If this common diffraction angle is represented



by 0 and if we are looking at the mth order spectrum, then the two wavelengths A and A + AA will be
just resolved if the following two equations are simultaneously satisfied:

d Sinb = m(A + AX)
and dSinB =mA + NN
Thus,

R= A/AA=m.N
which implies that the resolving power depends on the total number of lines in the grating—obviously
on only those lines which are exposed to the incident beam. Further, the resolving power is
proportional to the order of the spectrum.
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