


with initial conditions y(0) = 0, y′(0) = 1.

If

y =

∞∑
k=0

akx
k

then

y′(x) =

∞∑
k=1

kakx
k−1

and

y′′(x) =

∞∑
k=2

k(k − 1)akx
k−2

Substituting these into Airy’s equation gives

∞∑
k=2

k(k − 1)akx
k−2 = x

∞∑
k=0

akx
k =

∞∑
k=0

akx
k+1

We cannot compare these series directly, so we make a change of index m = k − 2 for the left sum, and m = k + 1
for the right sum

∞∑
m=0

(m+ 2)(m+ 1)am+2x
m =

∞∑
m=1

am−1x
m

These series begin and different indices, so we rewrite the left sum as

(2)(1)a2 +

∞∑
m=1

(m+ 2)(m+ 1)am+2x
m =

∞∑
m=1

am−1x
m

Since the coefficients of two equivalent power series must be identical, we have the conditions

a2 = 0

and
(m+ 2)(m+ 1)am+2 = am−1

The latter can be written as
am+2 =

am−1
(m+ 2)(m+ 1)

which is called the recurrence relation.

The recurrence relation determines the values of all the coefficients in terms of the first few coefficients. Specifically,

For m = 1, 4, 7, ...: a3 =
a0
3 ∗ 2

, a6 =
a3
6 ∗ 5

=
1

6 ∗ 5
a0
3 ∗ 2

, a9 = ....

For m = 2, 5, 8, ...: a4 =
a1
4 ∗ 3

, a7 =
a4
7 ∗ 6

=
1

7 ∗ 6
a1
4 ∗ 3

, a10 = ....

For m = 3, 6, 9, ...: a5 =
a2
5 ∗ 4

= 0, a8 =
a5
8 ∗ 7

= 0, a11 = 0....

If we subsitute these coefficients back into the power series, we get

y(x) =

∞∑
k=0

akx
k = a0 + a1x+ a2x

2 + a3x
3 + ...



a0 + a1x+
a0
3 ∗ 2

x3 +
a1
4 ∗ 3

x4 +
a0

6 ∗ 5 ∗ 3 ∗ 2
x6 +

a1
7 ∗ 6 ∗ 4 ∗ 3

x7 + ...

= a0

[
1 +

1

3 ∗ 2
x3 +

1

6 ∗ 5 ∗ 3 ∗ 2
x6 + ...

]
+ a1

[
x+

1

4 ∗ 3
x4 +

1

7 ∗ 6 ∗ 4 ∗ 3
x7 + ...

]
= a0y1(x) + a2y2(x)

The functions y1(x) and y2(x) are the Airy functions of the first and second kind respectively. Note, if a2 6= 0
there would be a third linearly independent solution of Airy’s equation, which cannot happen. The restriction on two
solutions forces one third of the coefficients to vanish!

3 Using the Differential Equation to Construct the Series Term by Term

The differential equation
y′′ = xy

actually provides a recipe for reconstructing the solutions of Airy’s equation term by term.

Begin with the initial conditions y(0) = 1, y′(0) = 0. The differential equation gives us y′′(0) = 0y(0) = 0,
Differentiating the ODE gives y′′′(x) = y(x) + xy′(x) which implies that y′′′(0) = y(0) = 1. Assuming the solution
has a convergent Taylor series expansion we have

y(x) = y(0) + y′(0)x+ y′′(0)
x2

2!
+ ...

= 1 + 0x+ 0x2 + 1
x3

3!
+ ...

= y1(x)

Unlike the recurrence relation, we don’t have a formula for the coefficients in terms of the initial terms, we must
calculate derivatives successively.

The big advantage of the term-by-term method is that it can be used for nonlinear ODEs!

For example, consider the initial value problem

y′(x) = y2(x), y(0) = 1

Using the initial conditions, and successive differentiation of the nonlnear ODE, we get y(0) = 1, y′(0) = y(0)2 = 1,
y′′(x) = 2y(x)y′(x) ⇒ y′′(0) = 2y(0)y′(0) = 2, y′′′(x) = 2y′(x)2 + 2y(x)y′′(x) ⇒ y′′′(0) = 2y′(0)2 +
2y(0)y′′(0) = 6, etc.

Constructing the Taylor series, we get

y(x) = y(0) + y′(0)x+ y′′(0)x2/2! + ...

= 1 + x+ x2 + x3 + ...

In fact the coefficient of all the terms is 1, which leads to

y(x) = 1 + x+ x2 + x3 + ...+ xn + ... =
1

1− x



which is in fact the solution of y′ = y2, y(0) = 1!

If you try to get recurrence relation from this nonline ODE, you must find a way to square the power series, that is,
you need to compute

(

∞∑
n=0

an(x− c)n)2

which is possible but leads to very messy (and nonlinear) quantities involving the coefficients!



3 Vectors: Triple Products

3.1 The Scalar Triple Product

The scalar triple product, as its name may suggest, results in a scalar as its result. It
is a means of combining three vectors via cross product and a dot product. Given the
vectors

A = A1 i + A2 j + A3 k

B = B1 i +B2 j +B3 k

C = C1 i + C2 j + C3 k

a scalar triple product will involve a dot product and a cross product

A · (B×C)

It is necessary to perform the cross product before the dot product when computing a
scalar triple product,

B×C =

∣∣∣∣∣∣
i j k
B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣ = i

∣∣∣∣B2 B3

C2 C3

∣∣∣∣− j

∣∣∣∣B1 B3

C1 C3

∣∣∣∣+ k

∣∣∣∣B1 B2

C1 C2

∣∣∣∣
since A = A1 i + A2 j + A3 k one can take the dot product to find that

A · (B×C) = (A1)

∣∣∣∣B2 B3

C2 C3

∣∣∣∣− (A2)

∣∣∣∣B1 B3

C1 C3

∣∣∣∣+ (A3)

∣∣∣∣B1 B2

C1 C2

∣∣∣∣
which is simply

Important Formula 3.1.

A · (B×C) =

∣∣∣∣∣∣
A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣
The usefulness of being able to write the scalar triple product as a determinant is not only
due to convenience in calculation but also due to the following property of determinants

Note 3.1. Exchanging any two adjacent rows in a determinant changes the sign of the
original determinant.
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Thus,

B · (A×C) =

∣∣∣∣∣∣
B1 B2 B3

A1 A2 A3

C1 C2 C3

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣ = −A · (B×C).

Formula 3.1.

B · (A×C) = −A · (B×C).

3.1.1 Worked examples.

Example 3.1.1. Given,

A = 2 i + 3 j− 1 k

B = − i + j

C = 2 i + 2 j

Find
A · (B×C)

Solution:
Method 1 :

Begin by finding

B×C =

∣∣∣∣∣∣
i j k
−1 1 0
2 2 0

∣∣∣∣∣∣ = i

∣∣∣∣1 0
2 0

∣∣∣∣− j

∣∣∣∣−1 0
2 0

∣∣∣∣+ k

∣∣∣∣−1 1
2 2

∣∣∣∣
=
(
(1)(0)− (0)(2)

)
i−
(
(−1)(0)− (0)(2)

)
j +
(
(−1)(2)− (1)(2)

)
k

= 0 i + 0 j− 4 k.
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. . . example continued

Take the dot product with A to find

A · (B×C) = (2)(0) + (3)(0) + (−1)(−4)

= 4

Method 2 :
Evaluate the determinant

A · (B×C) =

∣∣∣∣∣∣
2 3 −1
−1 1 0
2 2 0

∣∣∣∣∣∣ = (2)

∣∣∣∣1 0
2 0

∣∣∣∣− (3)

∣∣∣∣−1 0
2 0

∣∣∣∣+ (−1)

∣∣∣∣−1 1
2 2

∣∣∣∣
= (2)

(
(1)(0)− (0)(0)

)
− (3)

(
(−1)(0)− (0)(2)

)
+ (−1)

(
(−1)(2)− (1)(2)

)
= 4

Example 3.1.2. Prove that

Important Formula 3.2.

A ·B×C = A×B ·C

Solution:
Notice that there are no brackets given here as the only way to evaluate the scalar triple
products is to perform the cross products before performing the dot productsa. Let

A = A1 i + A2 j + A3 k

B = B1 i +B2 j +B3 k

C = C1 i + C2 j + C3 k

now,

A ·B×C =

∣∣∣∣∣∣
A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
C1 C2 C3

B1 B2 B3

A1 A2 A3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
C1 C2 C3

A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣ = C ·A×B = A×B ·C

aThis is due to the fact that if the dot product is evaluate first one would be left with a cross product
between a scalar and a vector which is not defined.
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3.2 The Vector Triple Product

The vector triple product, as its name suggests, produces a vector. It is the result of
taking the cross product of one vector with the cross product of two other vectors.

Important Formula 3.3 (Vector Triple Product).

A× (B×C) = (A ·C)B− (A ·B)C

Proving the vector triple product formula can be done in a number of ways. The straight-
forward method is to assign

A = A1 i + A2 j + A3 k

B = B1 i +B2 j +B3 k

C = C1 i + C2 j + C3 k

and work out the various dot and cross products to show that the result is the same.
Here we shall however go through a slightly more subtle but less calculation heavy proof.

Note 3.2. The vector A× (B×C) must be in the same plane as B and C. This is due
to fact that the vector that results from the cross product is perpendicular to both the
vectors whose product has just been taken. Since one can say that A × (B × C) is on
the same plane as B and C it follows that

A× (B×C) = αB + βC

where α and β are scalars.

We introduce a new coordinate system with the unit vector i′ along the vector B, j′ a
unit vector (orthogonal to i′), which is on the same plane as the both the vectors B and
C, and k′ a unit vector orthogonal to both i′ and j′1. Using this basis allows one to write
the vectors B and C as

B = B1i
′ + 0j′ + 0k′

C = C1i
′ + C2j

′ + 0k′

however there is no special reduction to the representation of the vector A in terms of
this new basis thus,

A = A1i
′ + A2j

′ + A3k
′.

1the unit vector k′ will thus point in the same direction as the vector B×C.
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BC Plane

x

y

z

C

B
B x C

(a) The vectors B and C define the BC-plane.

BC Plane

x

y

z

C

B
B x C

k’
j’

i’

(b) The unit vectors i′ and j′ are on the BC-
plane while k′ points in the same direction as
(B×C)

Figure 1: Figures representing the change in basis.

We know that the vector B×C must be of the form of 0i′ + 0j′ + γk′ for some scalar γ.
We find the value of γ by taking the cross product

B×C =

∣∣∣∣∣∣
i′ j′ k′

B1 0 0
C1 C2 0

∣∣∣∣∣∣ = i′
∣∣∣∣ 0 0
C2 0

∣∣∣∣− j′
∣∣∣∣B1 0
C1 0

∣∣∣∣+ k′
∣∣∣∣B1 0
C1 C2

∣∣∣∣ = 0i′ + 0j′ +B1C2k
′

We have now found that
B×C = B1C2k

′

.
Now examining the final cross product

A× (B×C) =

∣∣∣∣∣∣
i′ j′ k′

A1 A2 A3

0 0 B1C2

∣∣∣∣∣∣ = A2B1C2i
′ − A1B1C2j

′ + 0k′.

thus,
A× (B×C) = A2B1C2i

′ − A1B1C2j
′

.
Here a clever addition of zero is useful

A× (B×C) = A2B1C2i
′ − A1B1C2j

′ +A1B1C1i
′ − A1B1C1i

′︸ ︷︷ ︸
0

= (A2C2 + A1C1)B1i
′ − A1B1(C1i

′ + C2j
′).

6



This is the desired result as returning to our definitions of A, Band C in this basis,

A = A1i
′ + A2j

′ + A3k
′

B = B1i
′

C = C1i
′ + C2j

′

one finds that,

A ·B = A1B1

A ·C = A1C1 + A2C2

Hence,

A× (B×C) = (A2C2 + A1C1)B1i
′ − A1B1(C1i

′ + C2j
′)

= (A ·C)B− (A ·B)C.

7



3.3 Area and Volume Using a Cross Product

3.3.1 The area of a parallelogram.

θ
B

A
h

(a) The parallelogram

θ
B

A

h

(b) The triangle

Figure 2: Areas related to the cross product.

The are of a parallelogram is simply given by the product of the base and the height of
the parallelogram. Here this is given by

Area of parallelogram = h |B |
= (|A | sin(θ)) |B |
= |A | |B | sin(θ)

= |A×B|

3.3.2 The area of a triangle.

The area of a triangle is half the base times the height. From the figure we have

Area of triangle =
1

2
|B |h =

1

2
|B | (|A | sin(θ))

=
1

2
|A×B|
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3.3.3 The volume of a parallelepiped.

θ

φ

A

B

C

h

(a) The angle between B and C
is θ.

φ
h

φ

B x C

(b) The angle between h and A
is φ.

Figure 3: A parallelepiped.

ADVANCED ASIDE 3.1. A parallelepiped is a three dimensional object whose six
sides are parallelograms. The volume of a parallelepiped is given by

V = (Base Area)(Height)

The area of the base is the area of a parallelogram as such one has

Area of the Base = |B×C|

The height h requires a little geometry but is simply

h = |A | cos(φ)

notice that the vector B×A is parallel to the line h. Thus the vector A makes an anglea

with the vector B×C of γ = φ. Finally we have the volume of the parallelepiped given
by

Volume of parallelepiped = (Base)(height)

= (|B×C|) (|A | |cos(γ)|)
= |A | |B×C| |cos(γ)|
= |A · (B×C)|

aIt is also possible for B ×C to make an angle γ = 180◦ − φ which does not affect the result since
|cos(180◦ − φ)| = |cos(φ)|
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3.4 Summary of Vector Rules

Here we list most of the main results concerning vectors,

A ·A = A2 ≡ |A |2 (3.4.1)

A ·B = B ·A (3.4.2)

A · (αB) = α(A ·B) (3.4.3)

A · (B×C) = (A×B) ·C (3.4.4)

A×A = 0 (3.4.5)

A×B = −B×A (3.4.6)

A× (αB) = α(A×B) (3.4.7)

A× (B×C) = (A ·C)B− (A ·B)C (3.4.8)

3.4.1 Worked problem

Example 3.4.1 (Manipulating vectors without evaluation).
Prove that

(i) (A×B)× (C×D) = C(A ·B×D)−D(A ·B×C)

(ii) (A×B)× (C×D) = B(A ·C×D)−A(B ·C×D)

Solution:

(i) let U = A×B

(A×B)× (C×D) = U× (C×D)

= (U ·D)C− (U ·C)D using Eq 3.4.8

= (A×B ·D)C− (A×B ·C)D

= (A ·B×D)C− (A ·B×C)D using Eq 3.4.4

= C(A ·B×D)−D(A ·B×C).

(ii) let V = (C×D)

(A×B)× (C×D) = −(C×D)× (A×B) using Eq 3.4.6

= −V× (A×B)

= −{(V ·B)A− (V ·A)B} using Eq 3.4.8

= (C×D ·A)B− (C×D ·B)A

= (C ·D×A)B− (C ·D×B)A using Eq 3.4.4

= B(A ·C×D)−A(B ·C×D).
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2

Derivatives
The derivative r ʹ′ of a vector function r is defined in much
the same way as for real-valued functions:

if this limit exists. The geometric significance of this
definition is shown in Figure 1.

Figure 1
(b) The tangent vector rʹ′(t)(a) The secant vector 



3

Derivatives
If the points P and Q have position vectors r(t) and r(t + h),
then    represents the vector r(t + h) – r(t), which can
therefore be regarded as a secant vector.

If h > 0, the scalar multiple (1/h)(r(t + h) – r(t)) has the
same direction as r(t + h) – r(t). As h → 0, it appears that
this vector approaches a vector that lies on the tangent
line.

For this reason, the vector r ʹ′(t) is called the tangent vector
to the curve defined by r at the point P, provided that
r ʹ′(t) exists and r ʹ′(t) ≠ 0.



4

Derivatives
The tangent line to C at P is defined to be the line through
P parallel to the tangent vector r ʹ′(t).

We will also have occasion to consider the unit tangent
vector, which is



5

Derivatives
The following theorem gives us a convenient method for
computing the derivative of a vector function r: just
differentiate each component of r.
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Example 1
(a) Find the derivative of r(t) = (1 + t3)i + te–t j + sin 2t k.

(b) Find the unit tangent vector at the point where t = 0.

Solution:
(a) According to Theorem 2, we differentiate each
     component of r:

r ʹ′(t) = 3t2 i + (1 – t)e–t j + 2 cos 2t k
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Example 1 – Solution
(b) Since r(0) = i and r ʹ′(0) = j + 2k, the unit tangent vector
      at the point (1, 0, 0) is

cont’d
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Derivatives
Just as for real-valued functions, the second derivative of
a vector function r is the derivative of r ʹ′, that is, r ʺ″ = (r ʹ′)ʹ′.

For instance, the second derivative of the function,
r(t) = 〈2 cos t, sin t, t〉, is

r ʺ″(t) = 〈–2 cos t, –sin t, 0〉



9

Differentiation Rules
The next theorem shows that the differentiation formulas
for real-valued functions have their counterparts for
vector-valued functions.
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Example 4
Show that if | r(t) | = c (a constant), then r ʹ′(t) is orthogonal to
r(t) for all t.

Solution:
Since

      r(t)  r(t) = | r(t) |2  = c2

and c2 is a constant, Formula 4 of Theorem 3 gives

     0 =      [r(t)  r(t)] = r ʹ′(t)  r(t) + r(t)  r ʹ′(t) = 2r ʹ′(t)  r(t)

Thus r ʹ′(t)  r(t) = 0, which says that r ʹ′(t) is orthogonal to
r(t).
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Example 4 – Solution
Geometrically, this result says that if a curve lies on a
sphere with center the origin, then the tangent vector r ʹ′(t) is
always perpendicular to the position vector r(t). (See
Figure 4.)

cont’d

Figure 4
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Integrals
The definite integral of a continuous vector function r (t)
can be defined in much the same way as for real-valued
functions except that the integral is a vector.

But then we can express the integral of r in terms of the
integrals of its component functions f, g, and h as follows.
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Integrals
So

This means that we can evaluate an integral of a vector
function by integrating each component function.
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Integrals
We can extend the Fundamental Theorem of Calculus to
continuous vector functions as follows:

where R is an antiderivative of r, that is, R ʹ′(t) = r(t).

We use the notation ∫ r(t) dt for indefinite integrals
(antiderivatives).



15

Example 5

If r(t) = 2 cos t i + sin t j + 2t k, then

    ∫ r(t) dt =    ∫ 2 cos t dt   i +    ∫ sin t dt    j +    ∫ 2t dt    k

     = 2 sin t i – cos t j + t2 k + C

where C is a vector constant of integration, and
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