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Sequences and Series of Functions

In this lesson, we define and study the convergence of sequences and series

of functions. There are many different ways to define the convergence of a

sequence of functions, and different definitions lead to inequivalent types

of convergence. We consider here two basic types: pointwise and uniform

convergence.

Definition 0.1. Pointwise convergence: Pointwise convergence defines the

convergence of functions in terms of the conver- gence of their values at each

point of their domain. Suppose that(fn) is a sequence of functions fn : A→

Rand f : A → R. Then fn → f pointwise on A if fn(x) → f(x) as n for

every x ∈ A. We say that the sequence (fn) converges pointwise if it converges

pointwise to some function f , in which case f(x) = limfn(x). Pointwise

convergence is, perhaps, the most natural way to define the convergence of

functions, and it is one of the most important. Nevertheless, as the following

examples illustrate, it is not as well-behaved as one might initially expect.

Example 0.2. Suppose that fn : (0, 1) → Ris defined by n fn(x) = n
nx+1

Then, since x 6= 0, limn→∞fn(x) = limn→∞
1

x+1/n
= 1/x. sofn → f pointwise
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where f : (0, 1) → R is given by f(x) = 1/x. We have |fn(x)| < n for all

x ∈ (0, 1), so each fn is bounded on (0, 1), but their pointwise limit f is not.

Thus, pointwise convergence does not, in general, preserve boundedness.

Example 0.3. Suppose that fn : [0, 1] → R is defined by fn(x) = xn . If

0 ≤ x < 1, then xn → 0 as n → ∞, while ifx = 1, then xn → 1 as n → ∞.

So n → f pointwise where f(x) = 0 if 0 ≤ x < 1, and f(x) = 1 if x = 1.

Although each f n is continuous on [0, 1], their pointwise limit f is not (it

is discon- tinuous at 1). Thus, pointwise convergence does not, in general,

preserve continuity.

Example 0.4. Define fn : R → R by fn(x) = sinnx/n Then fn → 0 point-

wise on R. The sequence (fn) of derivatives fn(x) = cosnxdoes not converge

pointwise on R; for example, fn(π) = (1)n does not converge as n → ∞.

Thus, in general, one cannot differentiate a pointwise convergent sequence.

This is because the derivative of a small, rapidly oscillating function may be

large.

1 Uniform convergence

In this section, we introduce a stronger notion of convergence of functions

than pointwise convergence, called uniform convergence. The difference be-

tween point- wise convergence and uniform convergence is analogous to the

difference between continuity and uniform continuity.
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Definition 1.1. Suppose that (fn) is a sequence of functions fn : A → R

and f : A] → R. Then fn → f uniformly on A if, for every ε > 0, there

exists N ∈ N such that n > N implies that |fn(x)− f(x)| < ε for all x ∈ A.

When the domain A of the functions is understood, we will often say fn → f

uniformly instead of uniformly on A. The crucial point in this definition is

that N depends only on and not on x ∈ A, whereas for a pointwise convergent

sequence N may depend on bothε and x. A uniformly convergent sequence is

always pointwise convergent (to the same limit), but the converse is not true.

If for some ¿ 0 one needs to choose arbitrarily large N for differentx ∈ A,

meaning that there are sequences of values which converge arbitrarily slowly

on A, then a pointwise convergent sequence of functions is not uniformly

convergent.

Definition 1.2. The sequence fn(x) = xn in Example 0.3 converges point-

wise on [0, 1] but not uniformly on [0, 1]. For 0 ≤ x < 1 and 0 < ε < 1, we

have |fn(x) − f(x)| = |xn| < ε if and only if 0 ≤ x < 1/n . Since 1/n < 1

for alln ∈ N, no N works for all x sufficiently close to 1 (although there is no

difficulty at x = 1). The sequence does, however, converge uniformly on [0,

b] for every 0 ≤ b < 1; for0 < ε < 1, we can take N = logε/logb.

2 Properties of uniform convergence

In this section we prove that, unlike pointwise convergence, uniform conver-

gence preserves boundedness and continuity. Uniform convergence does not
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preserve dif- ferentiability any better than pointwise convergence. Neverthe-

less, we give a result that allows us to differentiate a convergent sequence;

the key assumption is that the derivatives converge uniformly.

• Boundedness First, we consider the uniform convergence of bounded

functions.

Theorem 2.1. Suppose that fn : A → R is bounded on A for every

n ∈ Nand fn → funiformly on A. Then f : A→ R is bounded on A

Proof. Proof. Taking ε = 1 in the definition of the uniform conver-

gence, we find that there existsN ∈ N such that |fn(x) − f(x)| < 1

for all x ∈ A ifn > N . Choose somen > N . Then, since f n is

bounded, there is a constant Mn ≥ 0 such that |fn(x)| ≤ Mn for all

x ∈ A. It follows that |f(x)| ≤ |f(x) − fn(x)| + |fn(x)| < 1 + Mn

for allx ∈ A, meaning that f is bounded on A (by 1 + Mn ). We do

not assume here that all the functions in the sequence are bounded by

the same constant. (If they were, the pointwise limit would also be

bounded by that constant.) In particular, it follows that if a sequence

of bounded functions converges pointwise to an unbounded function,

then the convergence is not uniform.

• continuity

One of the most important property of uniform convergence is that it

preserves continuity.
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Theorem 2.2. If a sequence (fn) of continuous functions fn : A→ R

converges uniformly on AR to f : A → R, then f is continuous on

A. Proof. Suppose that c A and ¿ 0 is given. Then, for every n

N, |f(x) − f(c)| ≤ |f(x) − fn(x)| + |fn(x) − fn(c)| + |fn(c) − f(c)|

. By the uniform convergence of (fn), we can choosen ∈ N such that

|fn(x) − f(x)| < ε/3 for allx ∈ A, and for such an n it follows that

|f(x)f (c)| < |fn(x)−fn(c)|+2ε/3 (Here we use the fact that fn is close

to f at both x and c, where x is an an arbitrary point in a neighborhood of

c; this is where we use the uniform convergence in a crucial way.) Since

fnis continuous on A, there exists δ > 0 such that |fn(x)− fn(c)| < ε if

|x− c < δ and x ∈ A,which implies that |f(x)− f(c)| < ε if |x− c| < δ

and x ∈ A. This proves that f is continuous

This result can be interpreted as justifying an exchange in the order of

limits limn→∞limx→cfn(x) = limx→climn→∞fn(x). Such exchanges of

limits always require some sort of condition for their validity in this

case, the uniform convergence of f n to f is sufficient, but pointwise

convergence is not.

• Differentiability.

The uniform convergence of differentiable functions does not, in gen-

eral, imply anything about the convergence of their derivatives or the

differentiability of their limit. As noted above, this is because the val-

ues of two functions may be close together while the values of their
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derivatives are far apart. Thus, we have to impose strong conditions

on a sequence of functions and their derivatives if we hope to prove

that fn → f implies fn → f . The following example shows that the

limit of the derivatives need not equal the derivative of the limit even

if a sequence of differentiable functions converges uniformly and their

derivatives converge pointwise.

Example 2.3. Consider the sequence (fn) of functions fn : R →

Rdefined by fn(x) = x/1 + nx2 Then fn → 0 uniformly on R. To see

this, we write |fn(x)| = (1/
√
n)(
√
n|x|/1 + nx2) = (1/

√
n)(t/1 + t2)

where t =
√
n|x|. We have t/1 + t2 ≤ 1/2 for all t ∈ R, since

(1 − t)2 ≥ 0, which implies that 2t1 + t2 . Using this inequality,

we get |fn(x)| ≤ 1/2
√
n for all x ∈ R. Hence, given ε > 0, choose

N = 1/(4ε2). Then |fn(x)| < ε for all x ∈ R if n ¿ N , which proves

that(fn) converges uniformly to 0 onR. (Alternatively, we could get

the same result by using calculus to compute the maximum value of

|fn|onR.) Each fn is differentiable with fn(x) = (1nx2)/(1 + nx2)2 It

follows that fn → g pointwise asn → ∞ where g(x) = 0 if x 6= 0 and

g(x) = 1 if x = 0 , The convergence is not uniform since g is discon-

tinuous at 0. Thus, fn → 0 uni- formly, but fn(0) → 1, so the limit

of the derivatives is not the derivative of the limit. However, we do

get a useful result if we strengthen the assumptions and require that the

derivatives converge uniformly, not just pointwise. The proof involves

a slightly tricky application of the mean value theorem.
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Theorem 2.4. Suppose that (fn) is a sequence of differentiable func-

tions fn : (a, b)→ R such that fn → f pointwise and f 1
n → g uniformly

for some f, g : (a, b)→ R. Then f is differentiable on (a, b) and f 1 = g.

Proof.
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3 Series of Function

The convergence of a series is defined in terms of the convergence of its

sequence of partial sums, and any result about sequences is easily translated

into a correspond- ing result about series.

Definition 3.1. Suppose that (fn) is a sequence of functions fn : A→ R, and

define a sequence (Sn) of partial sumsSn : A → R by Sn(x) =
∑n

k=1 fk(x)

Then the series S(x) =
∑∞

n=1 fn(x) converges pointwise to S : A → R on

A if Sn → S as n → ∞ pointwise on A, and uniformly to S on A if SnS

uniformly on A. We illustrate the definition with a series whose partial sums

we can compute explicitly.

Example 3.2. he geometric series
∑∞

n=0 x
n has partial sums Sn(x) =

∑n
k=0 x

k =

1xn+1/1x Thus,Sn(x)→ 1/(1x) as n→∞ if |x| < 1 and diverges if |x| ≥ 1,

meaning that
∑∞

n=0 x
n = 1/(1−x) pointwise on (−1, 1). Since 1/(1-x) is un-

bounded on (-1, 1), the convergence cannot be uniform. The series does, how-

ever, converges uniformly on [−ρ, ρ] for every 0 ≤ ρ < 1. To prove this, we

estimate for |x| ≤ ρ that |Sn(x)−1/1−x| = |x|(n+1)/(1−x) = ρ(n+1)/1−ρ

Since ρ(n+1)/(1−ρ)→ 0 as n→∞, given any ε > 0 there exists N ∈ N,

depending only on ε and ρ, such that 0 ≤ ρ(n + 1)/1 − ρ < ε for all n > N

. It follows that |
∑n

k=0 x
k − 1/(1 − x)| ≤ ε for all x[−ρ, ρ] and all n > N ,

which proves that the series converges uniformly on [−ρ, ρ].

The Cauchy condition for the uniform convergence of sequences immediately

gives a corresponding Cauchy condition for the uniform convergence of series.
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Theorem 3.3. Let (fn) be a sequence of functions fn : A → R. The series∑∞
n=1 fn converges uniformly on A if and only if for every ε > 0 there exists

N ∈ N such that |
∑n

k=m+1 fk(x)| < ε for all x ∈ A and all n > m > N .

Proof. Let Sn(x) =
∑n

k=1 fk(x) = f1(x) + f2(x) + + fn(x). Then the

sequence(Sn), and therefore the series uniformly if and only if for every

ε > 0 there exists N such that |Sn(x)Sm(x)| < ε , converges for all x ∈ A

and all n,m > N . Assuming n > m without loss of generality, we have

Sn(x)Sm(x) = fm + 1(x) +fm + 2(x) + +fn(x) =
∑n

k=m+1 fk(x) so the result

follows.

This condition says that the sum of any number of consecutive terms in

the series gets arbitrarily small sufficiently far down the series.

4 The Weierstrass M -test

The following simple criterion for the uniform convergence of a series is very

useful. The name comes from the letter traditionally used to denote the

constants, or majorants, that bound the functions in the series.

Theorem 4.1. (Weierstrass M -test).

Let (fn) be a sequence of functions n : A→ R, and suppose that for everyn ∈

N there exists a constant Mn ≥ 0 such that |fn(x)| ≤ Mn for all x ∈ A,∑∞
n=1Mn <∞
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Then
∑∞

n=1 fn(x) converges uniformly on A.

Proof. The result follows immediately from the observation that
∑∞

n=1 fn

is uniformly Cauchy if
∑∞

n=1Mn is Cauchy. In detail, let ε > 0 be given.

The Cauchy condition for the convergence of a real series implies that there

exists N ∈ N such that
∑n

k=m+1Mk(x) < ε for all n > m > N . Then for

allx ∈ A and alln > m > N , we have |
∑n

k=m+1 fk(x)| <
∑n

k=m+1 |fk(x)| ≤∑n
k=m+1Mk(x) < ε Thus,

∑∞
n=1 fn satisfies the uniform Cauchy condition ,

so it converges uniformly.

Example 4.2. The seriesf(x) =
∑∞

n=1(1/2
n)cos(3nx) converges uniformly

on R by the M -test since |(1/2n)cos(3nx)| ≤ 1/2n,
∑∞

n=1 1/2n = 1.

5 Courtesy

1. https://www.math.ucdavis.edu

2. lecture notes on sequence of functions and series of function.
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