Subgroups

<u>Definition</u>: A subset H of a group G is a subgroup of G if H is itself a group under the operation in G.

<u>Note</u>: Every group G has at least two subgroups: G itself and the subgroup $\{e\}$, containing only the identity element. All other subgroups are said to be proper subgroups.

Examples

1. GL(*n*,R), the set of invertible $n \times n$ matrices with real entries is a group under matrix multiplication. We denote by SL(n,R) the set of $n \times n$ matrices with real entries whose determinant is equal to 1. SL(n,R) is a proper subgroup of GL(n,R). (GL(n,R), is called the general linear group and SL(n,R) the special linear group.)

2. In the group D_4 , the group of symmetries of the square, the subset $\{e, r, r^2, r^3\}$ forms a

proper subgroup, where r is the transformation defined by rotating $\frac{\pi}{2}$ units about the z-

axis.

3. In Z_9 under the operation +, the subset {0, 3, 6} forms a proper subgroup.

<u>Problem 1</u>: Find two different proper subgroups of S_3 .

We will prove the following two theorems in class:

Theorem: Let H be a nonempty subset of a group G. H is a subgroup of G iff

- (i) H is closed under the operation in G and
- (*ii*) every element in *H* has an inverse in *H*.

For finite subsets, the situation is even simpler:

Theorem: Let H be a nonempty *finite* subset of a group G. H is a subgroup of G iff H is closed under the operation in G.

Problem 2: Let H and K be subgroups of a group G. (a) Prove that $H \cap K$ is a subgroup of G. (b) Show that $H \cup K$ need not be a subgroup

Example: Let Z be the group of integers under addition. Define H_n to be the set of all multiples of n. It is easy to check that H_n is a subgroup of Z. Can you identify the subgroup $H_n \cap H_m$? Try it for $H_6 \cap H_9$.

Note that the proof of part (a) of Problem 2 can be extended to prove that the intersection of any number of subgroups of G, finite or infinite, is again a subgroup.

Cyclic Groups and Subgroups

We can always construct a subset of a group G as follows: Choose any element a in G. Define $\langle a \rangle = \{a^n \mid n \in Z\}$, i.e. $\langle a \rangle$ is the set consisting of all powers of a.

<u>Problem 3:</u> Prove that $\langle a \rangle$ is a subgroup of G.

<u>Definition</u>: $\langle a \rangle$ is called the cyclic subgroup generated by *a*. If $\langle a \rangle = G$, then we say that *G* is a cyclic group. It is clear that cyclic groups are abelian.

For the next result, we need to recall that two integers *a* and *n* are relatively prime if and only if gcd(a, n)=1. We have proved that if gcd(a, n)=1, then there are integers *x* and *y* such that ax + by = 1. The converse of this statement is also true:

<u>Theorem</u>: Let *a* and *n* be integers. Then gcd(a, n)=1 if and only if there are integers *x* and *y* such that ax + by = 1.

<u>Problem 4:</u> (a) Let $U_n = \{a \in Z_n | gcd(a,n)=1\}$. Prove that U_n is a group under multiplication modulo n. $(U_n$ is called the group of units in Z_n .) (b) Determine whether or not U_n is cyclic for n=7, 8, 9, 15.

We will prove the following in class. <u>Theorem</u>: Let G be a group and $a \in G$.

(1) If *a* has infinite order, then $\langle a \rangle$ is an infinite subgroup consisting of the distinct elements a^k with $k \in \mathbb{Z}$.

(2) If *a* has finite order *n*, then $\langle a \rangle$ is a subgroup of order *n* and $\langle a \rangle = \{e = a^0, a^1, a^2, \dots a^{n-1}\}.$

<u>Theorem:</u> Every subgroup of a cyclic group is cyclic.

<u>Problem 5</u>: Find all subgroups of U_{18} .

Note: When the group operation is addition, we write the inverse of *a* by -a rather than a^{-1} , the identity by 0 rather than *e*, and a^k by *ka*. For example, in the group of integers under addition, the subgroup generated by 2 is $\{2\} = \{2k | k \in Z\}$.

<u>Problem 6</u>: Show that the additive group $Z_2 \times Z_3$ is cyclic, but $Z_2 \times Z_2$ is not.

<u>Problem 7:</u> Let G be a group of order n. Prove that G is cyclic if and only if G contains an element of order n.

The notion of cyclic group can be generalized as follows. : Let S be a nonempty subset of a group G. Let $\langle S \rangle$ be the set of all possible products, in every order, of elements of S and their inverses.

We will prove the following theorem in class.

<u>Theorem</u>: Let S be a nonempty subset of a group G.

- (1) $\langle S \rangle$ is a subgroup of G that contains S.
- (2) If *H* is a subgroup of *G* that contains *S*, then *H* contains $\langle S \rangle$.
- (3) $\langle S \rangle$ is the intersection of all subgroups of G that contain S.

The second part of this last theorem states that $\langle S \rangle$ is the smallest subgroup of *G* that contains $\langle S \rangle$. The group $\langle S \rangle$ is called the <u>subgroup of *G* generated by *S*</u>. Note that when $S = \{a\}, \langle S \rangle$ is just the cyclic subgroup generated by *a*. In the case when $\langle S \rangle = G$, we say that <u>*G* is generated by *S*</u>, and the elements of *S* are called <u>generators of *G*</u>.

Example: Recall that we showed that every element in D_4 could be represented by r^k or ar^k for k=0, 1, 2, 3, where r is the transformation defined by rotating $\frac{\pi}{2}$ units about the z-axis, and a is rotation π units about the line y=x in the x-y plane. Thus D_4 is generated by $S = \{a, r\}$.

<u>Problem 8</u>: Show that U_{15} is generated by $\{2, 13\}$.

Cyclic Groups

Cyclic groups are groups in which every element is a power of some fixed element. (If the group is abelian and I'm using + as the operation, then I should say instead that every element is a *multiple* of some fixed element.) Here are the relevant definitions.

Definition. Let G be a group, $g \in G$. The order of g is the smallest positive integer n such that $g^n = 1$. If there is no positive integer n such that $g^n = 1$, then g has infinite order.

In the case of an abelian group with + as the operation and 0 as the identity, the order of g is the smallest positive integer n such that ng = 0.

Definition. If G is a group and $q \in G$, then the subgroup generated by q is

$$\langle g \rangle = \{ g^n \mid n \in \mathbb{Z} \}.$$

If the group is abelian and I'm using + as the operation, then

$$\langle g \rangle = \{ ng \mid n \in \mathbb{Z} \}$$

Mathematics **Definition.** A group G is cyclic if $G = \langle g \rangle$ for some $g \in G$. g is a generator of $\langle g \rangle$.

If a generator g has order n, $G = \langle g \rangle$ is **cyclic of order** n. If a generator g has infinite order, $G = \langle g \rangle$ is infinite cyclic. Mor

Example. (The integers and the integers mod n are cyclic) Show that \mathbb{Z} and \mathbb{Z}_n for n > 0 are cyclic.

 \mathbb{Z} is an infinite cyclic group, because every element is a multiple of 1 (or of -1). For instance, $117 = 117 \cdot 1$. (Remember that " $117 \cdot 1$ " is really shorthand for $1 + 1 + \cdots + 1 - 1$ added to itself 117 times.)

In fact, it is the only infinite cyclic group up to **isomorphism**.

Notice that a cyclic group can have more than one generator.

If n is a positive integer, \mathbb{Z}_n is a cyclic group of order n generated by 1.

For example, 1 generates \mathbb{Z}_7 , since

```
1 + 1 = 2
               1 + 1 + 1 = 3
           1 + 1 + 1 + 1 = 4
        1 + 1 + 1 + 1 + 1 = 5
   1 + 1 + 1 + 1 + 1 + 1 = 6
1 + 1 + 1 + 1 + 1 + 1 + 1 = 0
```

In other words, if you add 1 to itself repeatedly, you eventually cycle back to 0.

a cyclic group of order 7

Notice that 3 also generates \mathbb{Z}_7 :

$$3+3=6$$

$$3+3+3=2$$

$$3+3+3+3=5$$

$$3+3+3+3+3=1$$

$$3+3+3+3+3+3=4$$

$$3+3+3+3+3+3=0$$

The "same" group can be written using multiplicative notation this way: $\overline{T}_{1} = \int (1 - 2\pi)^{2}$

$$\mathbb{Z}_7 = \{1, a, a^2, a^3, a^4, a^5, a^6\}.$$

In this form, a is a generator of \mathbb{Z}_7 .

It turns out that in $\mathbb{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$, every nonzero element generates the group. On the other hand, in $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$, only 1 and 5 generate. \Box

Lemma. Let $G = \langle g \rangle$ be a finite cyclic group, where g has order n. Then the powers $\{1, g, \dots, g^{n-1}\}$ are distinct.

Proof. Since g has order $n, g, g^2, \ldots g^{n-1}$ are all different from 1. Now I'll show that the powers $\{1, g, \ldots, g^{n-1}\}$ are distinct. Suppose $g^i = g^j$ where $0 \le j < i < n$. Then 0 < i - j < n and $g^{i-j} = 1$, contrary to the preceding observation.

Therefore, the powers $\{1, g, \dots, g^{n-1}\}$ are distinct. \Box

Lemma. Let $G = \langle g \rangle$ be infinite cyclic. If m and n are integers and $m \neq n$, then $g^m \neq g^n$.

Proof. One of m, n is larger — suppose without loss of generality that m > n. I want to show that $g^m \neq g^n$; suppose this is false, so $g^m = g^n$. Then $g^{m-n} = 1$, so g has finite order. This contradicts the fact that a generator of an infinite cyclic group has infinite order. Therefore, $g^m \neq g^n$. \Box

The next result characterizes subgroups of cyclic groups. The proof uses the Division Algorithm for integers in an important way.

Theorem. Subgroups of cyclic groups are cyclic.

Proof. Let $G = \langle g \rangle$ be a cyclic group, where $g \in G$. Let H < G. If $H = \{1\}$, then H is cyclic with generator 1. So assume $H \neq \{1\}$.

To show H is cyclic, I must produce a generator for H. What is a generator? It is an element whose powers make up the group. A thing should be smaller than things which are "built from" it — for example, a brick is smaller than a brick building. Since elements of the subgroup are "built from" the generator, the generator should be the "smallest" thing in the subgroup.

What should I mean by "smallest"?

Well, G is cyclic, so everything in G is a power of q. With this discussion as motivation, let m be the smallest positive integer such that $q^m \in H$.

Why is there such an integer m? Well, H contains something other than $1 = g^0$, since $H \neq \{1\}$. That "something other" is either a positive or negative power of g. If H contains a positive power of g, it must contain a *smallest* positive power, by well ordering.

On the other hand, if H contains a negative power of g — say g^{-k} , where k > 0 — then $g^k \in H$, since H is closed under inverses. Hence, H again contains positive powers of q, so it contains a *smallest* positive power, by Well Ordering.

So I have g^m , the smallest positive power of g in H. I claim that g^m generates H. I must show that every $h \in H$ is a power of g^k . Well, $h \in H < G$, so at least I can write $h = g^n$ for some n. But by the Division Algorithm, there are unique integers q and r such that

$$n = mq + r$$
, where $0 \le r < m$.

It follows that

$$g^n = g^{mq+r} = (g^m)^q \cdot g^r$$
, so $h = (g^m)^q \cdot g^r$, or $g^r = (g^m)^{-q} \cdot h$.

Now $g^m \in H$, so $(g^m)^{-q} \in H$. Hence, $(g^m)^{-q} \cdot h \in H$, so $g^r \in H$. However, g^m was the smallest positive power of g lying in H. Since $g^r \in H$ and r < m, the only way out is if r = 0. Therefore, n = qm, and Matheme $h = g^n = (g^m)^q \in \langle g^m \rangle.$

This proves that g^m generates H, so H is cyclic. \Box

Example. (Subgroups of the integers) Describe the subgroups of \mathbb{Z} .

Every subgroup of \mathbb{Z} has the form $n\mathbb{Z}$ for $n \in \mathbb{Z}$. For example, here is the subgroup generated by 13:

$$13\mathbb{Z} = \langle 13 \rangle = \{ \dots - 26, -13, 0, 13, 26, \dots \}. \quad \Box$$

Example. Consider the following subset of \mathbb{Z} :

$$H = \{30x + 42y + 70z \mid x, y, z \in \mathbb{Z}\}.$$

(a) Prove that H is a subgroup of \mathbb{Z} .

(b) Find a generator for H.

(a) First,

$$0 = 30 \cdot 0 + 42 \cdot 0 + 70 \cdot 0 \in H.$$

If $30x + 42y + 70z \in H$, then

$$-(30x + 42y + 70z) = 30(-x) + 42(-y) + 70(-z) \in H.$$

If 30a + 42b + 70c, $30d + 42e + 70f \in H$, then

$$(30a + 42b + 70c) + (30d + 42e + 70f) = 30(a + d) + 42(b + e) + 70(c + f) \in H.$$

Hence, H is a subgroup. \Box

(b) Note that 2 = (30, 42, 70). I'll show that $H = \langle 2 \rangle$. First, if $30x + 42y + 70z \in H$, then

$$30x + 42y + 70z = 2(15x + 21y + 35z) \in \langle 2 \rangle.$$

Therefore, $H \subset \langle 2 \rangle$. Conversely, suppose $2n \in \langle 2 \rangle$. I must show $2n \in H$. The idea is to write 2 as a linear combination of 30, 42, and 70. I'll do this in two steps. First, note that (30, 42) = 6, and

$$30 \cdot 3 + 42 \cdot (-2) = 6.$$

(You can do this by juggling numbers or using the Extended Euclidean algorithm.) Now (6, 70) = 2, and

 $6 \cdot 12 + 70 \cdot (-1) = 2.$

Plugging $6 = 30 \cdot 3 + 42 \cdot (-2)$ into the last equation, I get

$$(30 \cdot 3 + 42 \cdot (-2)) \cdot 12 + 70 \cdot (-1) = 2$$

$$30 \cdot 36 + 42 \cdot (-24) + 70 \cdot (-1) = 2$$

Now multiply the last equation by n:

$$2n = 30 \cdot 36n + 42 \cdot (-24n) + 70 \cdot (-4n) +$$

This shows that $\langle 2 \rangle \subset H$. Therefore, $H = \langle 2 \rangle$. \Box

FGC Mathematics **Lemma.** Let G be a group, and let $g \in G$ have order m. Then $g^n = 1$ if and only if m divides n.

Proof. If m divides n, then n = mq for some q, so $g^n = (g^m)^q = 1$. Conversely, suppose that $g^n = 1$. By the Division Algorithm,

n = mq + r where $0 \le r < m$.

Hence,

$$g^n = g^{mq+r} = (g^m)^q g^r$$
 so $1 = g^r$.

Since m is the smallest positive power of g which equals 1, and since r < m, this is only possible if r = 0. Therefore, n = qm, which means that m divides n. \Box

Example. (The order of an element) Suppose an element g in a group G satisfies $g^{45} = 1$. What are the possible values for the order of g?

The order of q must be a divisor of 45. Thus, the order could be

$$1, 3, 5, 9, 15, \text{ or } 45.$$

And the order is certainly not (say) 7, since 7 doesn't divide 45. \Box

Thus, the order of an element is the *smallest* power which gives the identity the element in two ways. It is *smallest* in the sense of being *numerically* smallest, but it is also *smallest* in the sense that it *divides* any power which gives the identity.

Next, I'll find a formula for the order of an element in a cyclic group.

Proposition. Let $G = \langle g \rangle$ be a cyclic group of order n, and let m < n. Then g^m has order $\frac{n}{(m,n)}$.

Remark. Note that the order of g^m (the element) is the same as the order of $\langle g^m \rangle$ (the subgroup).

Proof. Since (m, n) divides m, it follows that $\frac{m}{(m, n)}$ is an integer. Therefore, n divides $\frac{mn}{(m, n)}$, and by the last lemma,

$$(q^m)^{\frac{n}{(m,n)}} = 1$$

Now suppose that $(q^m)^k = 1$. By the preceding lemma, n divides mk, so

$$\frac{n}{(m,n)} \mid k \cdot \frac{m}{(m,n)}.$$

However, $\left(\frac{n}{(m,n)}, \frac{m}{(m,n)}\right) = 1$, so $\frac{n}{(m,n)}$ divides k. Thus, $\frac{n}{(m,n)}$ divides any power of g^m which is 1, so it is the order of g^m . \Box

In terms of \mathbb{Z}_n , this result says that $m \in \mathbb{Z}_n$ has order $\frac{n}{(m,n)}$

Example. (Finding the order of an element) Find the order of the element a^{32} in the cyclic group $G = \{1, a, a^2, \dots a^{37}\}$. (Thus, G is cyclic of order 38 with generator a.)

In the notation of the Proposition, n = 38 and m = 32. Since (38, 32) = 2, it follows that a^{32} has order $\frac{38}{2}$ ondal = 19. \Box

Example. (Finding the order of an element) Find the order of the element $18 \in \mathbb{Z}_{30}$.

In this case, I'm using *additive* notation instead of multiplicative notation. The group is cyclic with order n = 30, and the element $18 \in \mathbb{Z}_{30}$ corresponds to a^{18} in the Proposition — so m = 18. (18,30) = 6, so the order of 18 is $\frac{30}{6} = 5$. \Box

Next, I'll give two important Corollaries of the proposition.

Corollary. The generators of $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ are the elements of $\{0, 1, 2, \dots, n-1\}$ which are relatively prime to n.

Proof. If $m \in \{0, 1, 2, \dots, n-1\}$ is a generator, its order is n. The Proposition says its order is $\frac{n}{(m,n)}$ Therefore, $n = \frac{n}{(m,n)}$, so (m,n) = 1.

Conversely, if (m, n) = 1, then the order of m is

$$\frac{n}{(m,n)} = \frac{n}{1} = n.$$

Therefore, m is a generator of \mathbb{Z}_n . \Box

1 Lagrange's theorem

Definition 1.1. The *index* of a subgroup H in a group G, denoted [G:H], is the number of left cosets of H in G ([G:H] is a natural number or infinite).

Theorem 1.2 (Lagrange's Theorem). If G is a finite group and H is a subgroup of G then |H| divides |G| and

$$[G:H] = \frac{|G|}{|H|}.$$

Proof. Recall that (see lecture 16) any pair of left cosets of H are either equal or disjoint. Thus, since G is finite, there exist $g_1, \ldots, g_n \in G$ such that

- $G = \bigcup_{i=1}^{n} g_i H$ and
- for all $1 \le i < j \le n$, $g_i H \cap g_j H = \emptyset$.

Since n = [G : H], it is enough to now show that each coset of H has size |H|.

size |H|. Suppose $g \in G$. The map $\varphi_g : H \to gH : h \mapsto gh$ is surjective by definition. The map φ_g is injective; for whenever

$$gh_1 = \varphi_g(h_1) = \varphi_g(h_2) = gh_2$$

, multiplying on the left by g^{-1} , we have that $h_1 = h_2$. Thus each coset of H in G has size |H|.

Thus

$$|G| = \sum_{i=1}^{n} |g_i H| = \sum_{i=1}^{n} |H| = [G:H]|H|$$

Note that in the above proof we could have just as easily worked with right cosets. Thus if G is a finite group and H is a subgroup of G then the number of left cosets is equal to the number of right cosets. More generally, the map $gH \mapsto Hg^{-1}$ is a bijection between the set of left cosets of H in G and the set of right cosets of H in G.

Corollary 1.3. Let G be a finite group. For all $x \in G$, |x| divides |G|. In particular, for all $x \in G$, $x^{|G|} = 1$.

Proof. By Lagrange's theorem $|x| = |\langle x \rangle|$ divides |G|.

Corollary 1.4. Every group of prime order is cyclic.

Proof. Let G be a finite group with |G| prime. Take $x \in G \setminus \{1\}$. By lagrange, |x| divides G and thus, since |G| is prime, |x| = |G| or |G| = 1. Since $x \neq 1$, $|x| \neq 1$. Thus |x| = |G| and so, $\langle x \rangle = G$.

Example: The converse of Lagrange's theorem does not hold. The group A_4 is of size 12 and has no subgroup of size 6. See exercise sheet 8 (Recall from linear algebra that A_4 is the group of all even permutations on 4 elements concretely: the set of permutations

(123), (132), (234), (243), (134), (143), (124), (142), (12)(34), (13)(24), (14)(23), e).

Definition 1.5. Let G be a group and S, T subsets of G. We write aematics

 $ST := \{ st \mid s \in S \text{ and } t \in T \}.$

Proposition 1.6. If K and H are subgroups of a finite group G then $|HK||H \cap K| = |H||K|.$

Proof. Let $\varphi : H \times K \to HK$ be the map defined by $\varphi(h,k) := hk$. This map is surjective by definition.

Claim: If $h \in H$ and $k \in K$ then $\varphi^{-1}(hk) = \{(hd^{-1}, dk) \mid d \in K \cap H\}.$

Clearly, if $d \in K \cap H$ and $h' = hd^{-1}, k' = dk$ then $h' \in H, k' \in K$ and h'k' = hk. Conversely, if $h' \in H$, $k' \in K$ and h'k' = hk then $k'k^{-1} = h'^{-1}h \in K \cap H, \ h' = h(h'^{-1}h)^{-1} \text{ and } k' = (h'^{-1}h)k.$ This proves the claim.

Therefore for each $x \in HK$, $|\varphi^{-1}(x)| = |H \cap K|$. So, $|HK||H \cap K| = |H \times K| = |H||K|.$

20. Normal subgroups

20.1. Definition and basic examples. Recall from last time that if Gis a group, H a subgroup of G and $q \in G$ some fixed element the set $gH = \{gh : h \in H\}$ is called a left coset of H.

Similarly, the set $Hg = \{hg : h \in H\}$ is called a right coset of H.

Definition. A subgroup H of a group G is called <u>normal</u> if gH = Hg for all $g \in G$.

The main motivation for this definition comes from quotient groups which will be discussed in a couple of weeks.

Let us now see some examples of normal and non-normal subgroups.

Example 1. Let G be an abelian group. Then any subgroup of G is normal.

Example 2. Let G be any group. Recall that the center of G is the set

 $Z(G) = \{ x \in G : qx = xq \text{ for all } q \in G \}.$

By Homework#6.3, Z(G) is a subgroup of G. Clearly, Z(G) is always a Example 3. $G = S_3$, $H = \langle (1, 2, 3) \rangle = \{e, (1, 2, 3), (1, 3, 2)\}.$ Let g = (1, 2). Then $gH = \{(1, 2), (1, 2), (1, 2, 2), (1, 3), (1, 3)\}$ normal subgroup of G; moreover, any subgroup of Z(G) is normal in G.

$$gH = \{(1,2), (1,2)(1,2,3), (1,2)(1,3,2)\} = \{(1,2), (2,3), (1,3)\}$$
$$Hg = \{(1,2), (1,2,3)(1,2), (1,3,2)(1,2)\} = \{(1,2), (1,3), (2,3)\}.$$

Note that while there exists $h \in H$ s.t. $gh \neq hg$, we still have gH = Hg as sets.

The above computation does not yet prove that H is normal in G since we only verified gH = Hg for a single g. To prove normality we would need to do the same for all $g \in G$. However, there is an elegant way to prove normality in this example, given by the following proposition.

Proposition 20.1. Let G be a group and H a subgroup of index 2 in G. Then H is normal in G.

Proof. This will be one of the problems in Homework#10.

Recall from Lecture 19 that the index of H in G, denoted by [G:H], is the number of left cosets of H in G and that if G is finite, then $[G:H] = \frac{|G|}{|H|}$. In

Example 3 we have |G| = 6 and |H| = 3, so [G : H] = 2 and Proposition 20.1 can be applied.

Finally, we give an example of a non-normal subgroup:

Example 4. $G = S_3$, $H = \langle (1,2) \rangle = \{e, (1,2)\}.$

To prove this subgroup is not normal it suffices to find a single $g \in G$ such that $gH \neq Hg$. We will show that g = (1,3) has this property.

We have $gH = \{(1,3), (1,3)(1,2)\} = \{(1,3), (1,2,3)\}$ and $Hg = \{(1,3), (1,2)(1,3)\} = \{(1,3), (1,3,2)\}$. Since $\{(1,3), (1,2,3)\} \neq \{(1,3), (1,3,2)\}$ (as sets), H is not normal.

20.2. Conjugation criterion of normality.

Definition. Let G be a group and fix $g, x \in G$. The element gxg^{-1} is called the conjugate of x by g.

Theorem 20.2 (Conjugation criterion). Let G be a group and H a subgroup of G. Then H is normal in $G \iff$ for all $h \in H$ and $g \in G$ we have $ghg^{-1} \in H$. In other words, H is normal in $G \iff$ for every element of H, all conjugates of that element also lie in H.

Proof. " \Rightarrow " Suppose that H is normal in G, so for every element $g \in G$ we have gH = Hg. Hence for every $h \in H$ we have $gh \in gH = Hg$, so gh = h'g for some $h' \in H$. Multiplying both sides on the right by g^{-1} , we get $ghg^{-1} \in H$. Thus, we showed that $ghg^{-1} \in H$ for all $g \in G, h \in H$, as desired.

desired. " \Leftarrow " Suppose now for all $g \in G, h \in H$ we have $ghg^{-1} \in H$. This means that $ghg^{-1} = h'$ for some $h' \in H$ (depending on g and h). The equality $ghg^{-1} = h'$ can be rewritten as gh = h'g. Since $h'g \in Hg$ by definition, we get that $gh \in Hg$ for all $h \in H, g \in G$, so $gH \subseteq Hg$ for all $g \in G$.

Since the last inclusion holds for all $g \in G$, it will remain true if we replace g by g^{-1} . Thus, $g^{-1}H \subseteq Hg^{-1}$ for all $g \in G$. Using Lemma 19.1 (associativity of multiplication of subsets in a group), multiplying the last inclusion by g on both left and right, we get $Hg \subseteq gH$.

Thus, for all $g \in G$ we have $gH \subseteq Hg$ and $Hg \subseteq gH$, and therefore gH = Hg.

20.3. Applications of the conjugation criterion.

Theorem 20.3. Let G and G' be groups and $\varphi : G \to G'$ a homomorphism. Then Ker (φ) is a normal subgroup of G.

 $\mathbf{2}$

Proof. Let $H = \text{Ker}(\varphi)$. We already know from Lecture 16 that H is a subgroup of G, so it suffices to check normality. We will do this using the conjugation criterion.

So, take any $h \in H$ and $g \in G$. By definition of the kernel we have $\varphi(h) = e'$ (the identity element of G'). Hence $\varphi(ghg^{-1}) = \varphi(g)\varphi(h)\varphi(g^{-1}) = \varphi(g)\varphi(h)\varphi(g^{-1})$ $\varphi(g)e'\varphi(g)^{-1} = e'$, so $ghg^{-1} \in \operatorname{Ker}(\varphi) = H$. Therefore, H is normal by Theorem 20.2.

Here are two more examples of application of the conjugation criterion

Example 5. Let A and B be any groups and $G = A \times B$ their direct product. Let $\widetilde{A} = \{(a, e_B) : a \in A\} \subseteq G$, the set of elements of G whose second component is the identity element of B.

It is not hard to show that \widetilde{A} is a subgroup of G and $\widetilde{A} \cong A$ (one can think of \widetilde{A} as a canonical copy of A in G).

We claim that A is normal in G. Indeed, take any $g \in G$ and $h \in A$. Thus, g = (x, y) and $h = (a, e_B)$ for some $a, x \in A$ and $y \in B$. Then $g^{-1} = (x^{-1}, y^{-1})$, so $ghg^{-1} = (x, y)(a, e_B)(x^{-1}, y^{-1}) = (xax^{-1}, ye_By^{-1}) =$ hematics $(xax^{-1}, e_B) \in \widetilde{A}$. Thus, \widetilde{A} is normal by Theorem 20.2.

Example 6. Let F be a field. Let

$$G = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in F, ac \neq 0 \right\} \quad and \quad H = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in F \right\}$$

In Lecture 12 we proved that G is a subgroup of $GL_2(F)$ (so G itself is a group). We also know that H is a subgroup $GL_2(F)$ (by Homework #7.5); since clearly $H \subseteq G$, it follows that H is a subgroup of G.

Using conjugation criterion, it is not difficult to check that H is normal in G.

Courtesy (Contents are sourced from) : ---

1. Subgroup

https://web.ma.utexas.edu/users/rodin/343K/Subgroups.pdf

2. Lagrange's theorem

http://www.math.uni-konstanz.de

3. Normal subgroups

http://people.virginia.edu

4. Cyclic Groups

http://sites.millersville.edu

Utpal Mondal - TGC Mathematics