
Subgroups

Definition:  A subset H of a group G is a subgroup of G if H is itself a group under the
operation in G.

Note:  Every group G has at least two subgroups: G itself and the subgroup {e},
containing only the identity element.  All other subgroups are said to be proper
subgroups.

Examples
1.  GL(n,R), the set of invertible 

† 

n ¥ n  matrices with real entries is a group under matrix
multiplication.  We denote by SL(n,R) the set of 

† 

n ¥ n  matrices with real entries whose
determinant is equal to 1. SL(n,R) is a proper subgroup of GL(n,R) .  (GL(n,R), is called
the general linear group and SL(n,R) the special linear group.)

2.  In the group 

† 

D4 , the group of symmetries of the square, the subset  

† 

{e,r,r2 ,r 3} forms a

proper subgroup, where r is the transformation defined by rotating 

† 

p
2

 units about the z-

axis.

3.  In 

† 

Z9 under the operation +, the subset {0, 3, 6} forms a proper subgroup.

Problem 1:  Find two different proper subgroups of 

† 

S3.

We will prove the following two theorems in class:
Theorem:  Let H be a nonempty subset of a group G.  H is a subgroup of G iff

(i)  H is closed under the operation in G  and
(ii) every element in H has an inverse in H.

For finite subsets, the situation is even simpler:

Theorem:  Let H be a nonempty finite subset of a group G.  H is a subgroup of G iff H is
closed under the operation in G .

Problem 2: Let H and K be subgroups of a group G.
(a) Prove that 

† 

H « K  is a subgroup of G.
(b) Show that 

† 

H » K  need not be a subgroup

Example:  Let Z be the group of integers under addition.  Define 

† 

Hn  to be the set of all
multiples of n.   It is easy to check that 

† 

Hn  is a subgroup of Z.   Can you identify the
subgroup 

† 

Hn « H m?  Try it for 

† 

H6 « H9 .



Note that the proof of part (a) of Problem 2 can be extended to prove that the intersection
of any number of subgroups of G, finite or infinite, is again a subgroup.

Cyclic Groups and Subgroups

We can always construct a subset of a group G as follows:
Choose any element a in G.  Define   

† 

a ={an | n Œ Z}, i.e. 

† 

a  is the set consisting of all
powers of a.

Problem 3:   Prove that 

† 

a  is a subgroup of G.

Definition: 

† 

a  is called the cyclic subgroup generated by a.  If 

† 

a  = G, then we say that
G is a cyclic group.  It is clear that cyclic groups are abelian.

For the next result, we need to recall that two integers a and n are relatively prime if and
only if gcd(a, n)=1.  We have proved that if gcd(a, n)=1, then there are integers x  and y
such that 

† 

ax + by =1.  The converse of this statement is also true:

Theorem:  Let a and n be integers.  Then gcd(a, n)=1 if and only if there are integers x
and y  such that 

† 

ax + by =1.

Problem 4:  (a) Let   

† 

Un ={a Œ Zn |  gcd(a,n)=1}.  Prove that 

† 

Un  is a group under
multiplication modulo n.  (

† 

Un  is called the group of units in 

† 

Zn .)
(b)  Determine whether or not 

† 

Un  is cyclic for n= 7, 8, 9, 15.

We will prove the following in class.
Theorem:  Let G be a group and 

† 

a Œ G .
(1)  If a has infinite order, then 

† 

a  is an infinite subgroup consisting of the
distinct elements 

† 

ak  with 

† 

k Œ Z .
(2) If a has finite order n, then 

† 

a  is a subgroup of order n and

  

† 

a ={e = a0,a1,a2 ,...,an-1}.

Theorem:  Every subgroup of a cyclic group is cyclic.

Problem 5:  Find all subgroups of 

† 

U18.

Note:  When the group operation is addition, we write the inverse of a by 

† 

-a  rather than

† 

a-1 , the identity by 0 rather than e, and 

† 

ak  by ka.  For example, in the group of integers
under addition, the subgroup generated by 2 is   

† 

2 ={2k| k Œ Z}.

Problem 6:  Show that the additive group 

† 

Z2 ¥ Z3  is cyclic, but 

† 

Z2 ¥ Z2  is not.



Problem 7:  Let G be a group of order n.  Prove that G is cyclic if and only if G contains
an element of order n.

The notion of cyclic group can be generalized as follows. :   Let S be a nonempty subset
of a group G. Let 

† 

S  be the set of all possible products, in every order, of elements of S
and their inverses.
We will prove the following theorem in class.
Theorem: Let S be a nonempty subset of a group G.

(1) 

† 

S  is a subgroup of G that contains S.
(2) If H is a subgroup of G that contains S, then H contains 

† 

S .
(3) 

† 

S  is the intersection of all subgroups of G that contain S.

The second part of this last theorem states that 

† 

S  is the smallest subgroup of G that
contains 

† 

S .  The group 

† 

S  is called the subgroup of G generated by S.
Note that when S = {a}, 

† 

S is just the cyclic subgroup generated by a.  In the case when

† 

S =G, we say that G is generated by S, and the elements of S are called generators of G.

Example:  Recall that we showed that every element in 

† 

D4  could be represented by 

† 

rk or

† 

ark  for k=0, 1, 2, 3, where r  is the transformation defined by rotating 

† 

p
2

 units about the

z-axis, and a is rotation 

† 

p  units about the line y=x in the x-y plane.  Thus 

† 

D4  is generated
by S ={a, r}.

Problem 8:  Show that 

† 

U15  is generated by {2, 13}.



10-1-2019

Cyclic Groups

Cyclic groups are groups in which every element is a power of some fixed element. (If the group is
abelian and I’m using + as the operation, then I should say instead that every element is a multiple of some
fixed element.) Here are the relevant definitions.

Definition. Let G be a group, g ∈ G. The order of g is the smallest positive integer n such that gn = 1.
If there is no positive integer n such that gn = 1, then g has infinite order.

In the case of an abelian group with + as the operation and 0 as the identity, the order of g is the
smallest positive integer n such that ng = 0.

Definition. If G is a group and g ∈ G, then the subgroup generated by g is

〈g〉 = {gn | n ∈ Z}.

If the group is abelian and I’m using + as the operation, then

〈g〉 = {ng | n ∈ Z}.

Definition. A group G is cyclic if G = 〈g〉 for some g ∈ G. g is a generator of 〈g〉.

If a generator g has order n, G = 〈g〉 is cyclic of order n. If a generator g has infinite order, G = 〈g〉
is infinite cyclic.

Example. (The integers and the integers mod n are cyclic) Show that Z and Zn for n > 0 are cyclic.

Z is an infinite cyclic group, because every element is a multiple of 1 (or of−1). For instance, 117 = 117·1.

(Remember that “117 · 1” is really shorthand for 1 + 1 + · · ·+ 1 — 1 added to itself 117 times.)

In fact, it is the only infinite cyclic group up to isomorphism.

Notice that a cyclic group can have more than one generator.

If n is a positive integer, Zn is a cyclic group of order n generated by 1.

For example, 1 generates Z7, since

1 + 1 = 2

1 + 1 + 1 = 3

1 + 1 + 1 + 1 = 4

1 + 1 + 1 + 1 + 1 = 5

1 + 1 + 1 + 1 + 1 + 1 = 6

1 + 1 + 1 + 1 + 1 + 1 + 1 = 0

1



In other words, if you add 1 to itself repeatedly, you eventually cycle back to 0.

0

1

2

34

5

6

a cyclic group of order 7

Notice that 3 also generates Z7:

3 + 3 = 6

3 + 3 + 3 = 2

3 + 3 + 3 + 3 = 5

3 + 3 + 3 + 3 + 3 = 1

3 + 3 + 3 + 3 + 3 + 3 = 4

3 + 3 + 3 + 3 + 3 + 3 + 3 = 0

The “same” group can be written using multiplicative notation this way:

Z7 = {1, a, a2, a3, a4, a5, a6}.

In this form, a is a generator of Z7.
It turns out that in Z7 = {0, 1, 2, 3, 4, 5, 6}, every nonzero element generates the group.
On the other hand, in Z6 = {0, 1, 2, 3, 4, 5}, only 1 and 5 generate.

Lemma. Let G = 〈g〉 be a finite cyclic group, where g has order n. Then the powers {1, g, . . . , gn−1} are
distinct.

Proof. Since g has order n, g, g2, . . . gn−1 are all different from 1.
Now I’ll show that the powers {1, g, . . . , gn−1} are distinct. Suppose gi = gj where 0 ≤ j < i < n. Then

0 < i− j < n and gi−j = 1, contrary to the preceding observation.
Therefore, the powers {1, g, . . . , gn−1} are distinct.

Lemma. Let G = 〈g〉 be infinite cyclic. If m and n are integers and m 6= n, then gm 6= gn.

Proof. One of m, n is larger — suppose without loss of generality that m > n. I want to show that gm 6= gn;
suppose this is false, so gm = gn. Then gm−n = 1, so g has finite order. This contradicts the fact that a
generator of an infinite cyclic group has infinite order. Therefore, gm 6= gn.

The next result characterizes subgroups of cyclic groups. The proof uses the Division Algorithm for
integers in an important way.

Theorem. Subgroups of cyclic groups are cyclic.

Proof. Let G = 〈g〉 be a cyclic group, where g ∈ G. Let H < G. If H = {1}, then H is cyclic with generator
1. So assume H 6= {1}.

2



To show H is cyclic, I must produce a generator for H. What is a generator? It is an element whose
powers make up the group. A thing should be smaller than things which are “built from” it — for example,
a brick is smaller than a brick building. Since elements of the subgroup are “built from” the generator, the
generator should be the “smallest” thing in the subgroup.

What should I mean by “smallest”?
Well, G is cyclic, so everything in G is a power of g. With this discussion as motivation, let m be the

smallest positive integer such that gm ∈ H.
Why is there such an integer m? Well, H contains something other than 1 = g0, since H 6= {1}. That

“something other” is either a positive or negative power of g. If H contains a positive power of g, it must
contain a smallest positive power, by well ordering.

On the other hand, if H contains a negative power of g — say g−k, where k > 0 — then gk ∈ H, since
H is closed under inverses. Hence, H again contains positive powers of g, so it contains a smallest positive
power, by Well Ordering.

So I have gm, the smallest positive power of g in H. I claim that gm generates H. I must show that
every h ∈ H is a power of gk. Well, h ∈ H < G, so at least I can write h = gn for some n. But by the
Division Algorithm, there are unique integers q and r such that

n = mq + r, where 0 ≤ r < m.

It follows that

gn = gmq+r = (gm)q · gr, so h = (gm)q · gr, or gr = (gm)−q · h.

Now gm ∈ H, so (gm)−q ∈ H. Hence, (gm)−q ·h ∈ H, so gr ∈ H. However, gm was the smallest positive

power of g lying in H. Since gr ∈ H and r < m, the only way out is if r = 0. Therefore, n = qm, and
h = gn = (gm)q ∈ 〈gm〉.

This proves that gm generates H, so H is cyclic.

Example. (Subgroups of the integers) Describe the subgroups of Z.

Every subgroup of Z has the form nZ for n ∈ Z.
For example, here is the subgroup generated by 13:

13Z = 〈13〉 = {. . .− 26,−13, 0, 13, 26, . . .}.

Example. Consider the following subset of Z:

H = {30x+ 42y + 70z | x, y, z ∈ Z}.

(a) Prove that H is a subgroup of Z.

(b) Find a generator for H.

(a) First,
0 = 30 · 0 + 42 · 0 + 70 · 0 ∈ H.

If 30x+ 42y + 70z ∈ H, then

−(30x+ 42y + 70z) = 30(−x) + 42(−y) + 70(−z) ∈ H.

If 30a+ 42b+ 70c, 30d+ 42e+ 70f ∈ H, then

(30a+ 42b+ 70c) + (30d+ 42e+ 70f) = 30(a+ d) + 42(b+ e) + 70(c+ f) ∈ H.

3



Hence, H is a subgroup.

(b) Note that 2 = (30, 42, 70). I’ll show that H = 〈2〉.
First, if 30x+ 42y + 70z ∈ H, then

30x+ 42y + 70z = 2(15x+ 21y + 35z) ∈ 〈2〉.

Therefore, H ⊂ 〈2〉.
Conversely, suppose 2n ∈ 〈2〉. I must show 2n ∈ H.
The idea is to write 2 as a linear combination of 30, 42, and 70. I’ll do this in two steps.
First, note that (30, 42) = 6, and

30 · 3 + 42 · (−2) = 6.

(You can do this by juggling numbers or using the Extended Euclidean algorithm.) Now (6, 70) = 2,
and

6 · 12 + 70 · (−1) = 2.

Plugging 6 = 30 · 3 + 42 · (−2) into the last equation, I get

(30 · 3 + 42 · (−2)) · 12 + 70 · (−1) = 2

30 · 36 + 42 · (−24) + 70 · (−1) = 2

Now multiply the last equation by n:

2n = 30 · 36n+ 42 · (−24n) + 70 · (−n) ∈ H.

This shows that 〈2〉 ⊂ H.
Therefore, H = 〈2〉.

Lemma. Let G be a group, and let g ∈ G have order m. Then gn = 1 if and only if m divides n.

Proof. If m divides n, then n = mq for some q, so gn = (gm)q = 1.
Conversely, suppose that gn = 1. By the Division Algorithm,

n = mq + r where 0 ≤ r < m.

Hence,
gn = gmq+r = (gm)qgr so 1 = gr.

Since m is the smallest positive power of g which equals 1, and since r < m, this is only possible if
r = 0. Therefore, n = qm, which means that m divides n.

Example. (The order of an element) Suppose an element g in a group G satisfies g45 = 1. What are
the possible values for the order of g?

The order of g must be a divisor of 45. Thus, the order could be

1, 3, 5, 9, 15, or 45.

And the order is certainly not (say) 7, since 7 doesn’t divide 45.

4



Thus, the order of an element is the smallest power which gives the identity the element in two ways.
It is smallest in the sense of being numerically smallest, but it is also smallest in the sense that it divides

any power which gives the identity.
Next, I’ll find a formula for the order of an element in a cyclic group.

Proposition. Let G = 〈g〉 be a cyclic group of order n, and let m < n. Then gm has order
n

(m,n)
.

Remark. Note that the order of gm (the element) is the same as the order of 〈gm〉 (the subgroup).

Proof. Since (m,n) divides m, it follows that
m

(m,n)
is an integer. Therefore, n divides

mn

(m,n)
, and by the

last lemma,

(gm)
n

(m,n) = 1.

Now suppose that (gm)k = 1. By the preceding lemma, n divides mk, so

n

(m,n)

∣

∣

∣
k ·

m

(m,n)
.

However,

(

n

(m,n)
,

m

(m,n)

)

= 1, so
n

(m,n)
divides k. Thus,

n

(m,n)
divides any power of gm which is 1,

so it is the order of gm.

In terms of Zn, this result says that m ∈ Zn has order
n

(m,n)
.

Example. (Finding the order of an element) Find the order of the element a32 in the cyclic group
G = {1, a, a2, . . . a37}. (Thus, G is cyclic of order 38 with generator a.)

In the notation of the Proposition, n = 38 and m = 32. Since (38, 32) = 2, it follows that a32 has order
38

2
= 19.

Example. (Finding the order of an element) Find the order of the element 18 ∈ Z30.

In this case, I’m using additive notation instead of multiplicative notation. The group is cyclic with
order n = 30, and the element 18 ∈ Z30 corresponds to a18 in the Proposition — so m = 18.

(18, 30) = 6, so the order of 18 is
30

6
= 5.

Next, I’ll give two important Corollaries of the proposition.

Corollary. The generators of Zn = {0, 1, 2, . . . , n − 1} are the elements of {0, 1, 2, . . . , n − 1} which are
relatively prime to n.

Proof. If m ∈ {0, 1, 2, . . . , n − 1} is a generator, its order is n. The Proposition says its order is
n

(m,n)
.

Therefore, n =
n

(m,n)
, so (m,n) = 1.

Conversely, if (m,n) = 1, then the order of m is

n

(m,n)
=

n

1
= n.

Therefore, m is a generator of Zn.

5



1 Lagrange’s theorem

Definition 1.1. The index of a subgroup H in a group G, denoted
[G : H], is the number of left cosets of H in G ( [G : H] is a natural
number or infinite).

Theorem 1.2 (Lagrange’s Theorem). If G is a finite group and H is
a subgroup of G then |H| divides |G| and

[G : H] =
|G|
|H|

.

Proof. Recall that (see lecture 16) any pair of left cosets of H are either
equal or disjoint. Thus, since G is finite, there exist g1, ..., gn ∈ G such
that

• G = ∪ni=1giH and

• for all 1 ≤ i < j ≤ n, giH ∩ gjH = ∅.
Since n = [G : H], it is enough to now show that each coset of H has
size |H|.
Suppose g ∈ G. The map ϕg : H → gH : h 7→ gh is surjective by
definition. The map ϕg is injective; for whenever

gh1 = ϕg(h1) = ϕg(h2) = gh2

, multiplying on the left by g−1, we have that h1 = h2. Thus each coset
of H in G has size |H|.
Thus

|G| =
n∑

i=1

|giH| =
n∑

i=1

|H| = [G : H]|H|

Note that in the above proof we could have just as easily worked with
right cosets. Thus if G is a finite group and H is a subgroup of G then
the number of left cosets is equal to the number of right cosets. More
generally, the map gH 7→ Hg−1 is a bijection between the set of left
cosets of H in G and the set of right cosets of H in G.



Corollary 1.3. Let G be a finite group. For all x ∈ G, |x| divides |G|.
In particular, for all x ∈ G, x|G| = 1.

Proof. By Lagrange’s theorem |x| = |〈x〉| divides |G|.
Corollary 1.4. Every group of prime order is cyclic.

Proof. Let G be a finite group with |G| prime. Take x ∈ G\{1}.
By lagrange, |x| divides G and thus, since |G| is prime, |x| = |G| or
|G| = 1. Since x 6= 1, |x| 6= 1. Thus |x| = |G| and so, 〈x〉 = G.

Example: The converse of Lagrange’s theorem does not hold. The
group A4 is of size 12 and has no subgroup of size 6. See exercise
sheet 8 (Recall from linear algebra that A4 is the group of all even
permutations on 4 elements concretely: the set of permutations

(123), (132), (234), (243), (134), (143), (124), (142), (12)(34), (13)(24), (14)(23), e).

Definition 1.5. Let G be a group and S, T subsets of G. We write

ST := {st | s ∈ S and t ∈ T}.

Proposition 1.6. If K and H are subgroups of a finite group G then

|HK||H ∩K| = |H||K|.

Proof. Let ϕ : H × K → HK be the map defined by ϕ(h, k) := hk.
This map is surjective by definition.

Claim: If h ∈ H and k ∈ K then ϕ−1(hk) = {(hd−1, dk) | d ∈ K∩H}.

Clearly, if d ∈ K ∩ H and h′ = hd−1, k′ = dk then h′ ∈ H, k′ ∈ K
and h′k′ = hk. Conversely, if h′ ∈ H, k′ ∈ K and h′k′ = hk then
k′k−1 = h′−1h ∈ K ∩ H, h′ = h(h′−1h)−1 and k′ = (h′−1h)k. This
proves the claim.

Therefore for each x ∈ HK, |ϕ−1(x)| = |H ∩K|. So,

|HK||H ∩K| = |H ×K| = |H||K|.



20. Normal subgroups

20.1. Definition and basic examples. Recall from last time that if G

is a group, H a subgroup of G and g ∈ G some fixed element the set

gH = {gh : h ∈ H} is called a left coset of H.

Similarly, the set Hg = {hg : h ∈ H} is called a right coset of H.

Definition. A subgroup H of a group G is called normal if gH = Hg for

all g ∈ G.

The main motivation for this definition comes from quotient groups which

will be discussed in a couple of weeks.

Let us now see some examples of normal and non-normal subgroups.

Example 1. Let G be an abelian group. Then any subgroup of G is normal.

Example 2. Let G be any group. Recall that the center of G is the set

Z(G) = {x ∈ G : gx = xg for all g ∈ G}.

By Homework#6.3, Z(G) is a subgroup of G. Clearly, Z(G) is always a

normal subgroup of G; moreover, any subgroup of Z(G) is normal in G.

Example 3. G = S3, H = 〈(1, 2, 3)〉 = {e, (1, 2, 3), (1, 3, 2)}.

Let g = (1, 2). Then

gH = {(1, 2), (1, 2)(1, 2, 3), (1, 2)(1, 3, 2)} = {(1, 2), (2, 3), (1, 3)}

Hg = {(1, 2), (1, 2, 3)(1, 2), (1, 3, 2)(1, 2)} = {(1, 2), (1, 3), (2, 3)}.

Note that while there exists h ∈ H s.t. gh 6= hg, we still have gH = Hg as

sets.

The above computation does not yet prove that H is normal in G since

we only verified gH = Hg for a single g. To prove normality we would need

to do the same for all g ∈ G. However, there is an elegant way to prove

normality in this example, given by the following proposition.

Proposition 20.1. Let G be a group and H a subgroup of index 2 in G.

Then H is normal in G.

Proof. This will be one of the problems in Homework#10. �

Recall from Lecture 19 that the index of H in G, denoted by [G : H], is the

number of left cosets of H in G and that if G is finite, then [G : H] = |G|
|H| . In

1
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Example 3 we have |G| = 6 and |H| = 3, so [G : H] = 2 and Proposition 20.1

can be applied.

Finally, we give an example of a non-normal subgroup:

Example 4. G = S3, H = 〈(1, 2)〉 = {e, (1, 2)}.

To prove this subgroup is not normal it suffices to find a single g ∈ G

such that gH 6= Hg. We will show that g = (1, 3) has this property.

We have gH = {(1, 3), (1, 3)(1, 2)} = {(1, 3), (1, 2, 3)} and Hg = {(1, 3), (1, 2)(1, 3)} =

{(1, 3), (1, 3, 2)}. Since {(1, 3), (1, 2, 3)} 6= {(1, 3), (1, 3, 2)} (as sets), H is not

normal.

20.2. Conjugation criterion of normality.

Definition. Let G be a group and fix g, x ∈ G. The element gxg−1 is called

the conjugate of x by g.

Theorem 20.2 (Conjugation criterion). Let G be a group and H a subgroup

of G. Then H is normal in G ⇐⇒ for all h ∈ H and g ∈ G we have

ghg−1 ∈ H. In other words, H is normal in G ⇐⇒ for every element of

H, all conjugates of that element also lie in H.

Proof. “⇒” Suppose that H is normal in G, so for every element g ∈ G

we have gH = Hg. Hence for every h ∈ H we have gh ∈ gH = Hg, so

gh = h′g for some h′ ∈ H. Multiplying both sides on the right by g−1, we

get ghg−1 ∈ H. Thus, we showed that ghg−1 ∈ H for all g ∈ G, h ∈ H, as

desired.

“⇐” Suppose now for all g ∈ G, h ∈ H we have ghg−1 ∈ H. This means

that ghg−1 = h′ for some h′ ∈ H (depending on g and h). The equality

ghg−1 = h′ can be rewritten as gh = h′g. Since h′g ∈ Hg by definition, we

get that gh ∈ Hg for all h ∈ H, g ∈ G, so gH ⊆ Hg for all g ∈ G.

Since the last inclusion holds for all g ∈ G, it will remain true if we

replace g by g−1. Thus, g−1H ⊆ Hg−1 for all g ∈ G. Using Lemma 19.1

(associativity of multiplication of subsets in a group), multiplying the last

inclusion by g on both left and right, we get Hg ⊆ gH.

Thus, for all g ∈ G we have gH ⊆ Hg and Hg ⊆ gH, and therefore

gH = Hg. �

20.3. Applications of the conjugation criterion.

Theorem 20.3. Let G and G′ be groups and ϕ : G→ G′ a homomorphism.

Then Ker (ϕ) is a normal subgroup of G.



3

Proof. Let H = Ker (ϕ). We already know from Lecture 16 that H is a

subgroup of G, so it suffices to check normality. We will do this using the

conjugation criterion.

So, take any h ∈ H and g ∈ G. By definition of the kernel we have

ϕ(h) = e′ (the identity element of G′). Hence ϕ(ghg−1) = ϕ(g)ϕ(h)ϕ(g−1) =

ϕ(g)e′ϕ(g)−1 = e′, so ghg−1 ∈ Ker (ϕ) = H. Therefore, H is normal by

Theorem 20.2. �

Here are two more examples of application of the conjugation criterion

Example 5. Let A and B be any groups and G = A × B their direct

product. Let Ã = {(a, eB) : a ∈ A} ⊆ G, the set of elements of G whose

second component is the identity element of B.

It is not hard to show that Ã is a subgroup of G and Ã ∼= A (one can

think of Ã as a canonical copy of A in G).

We claim that Ã is normal in G. Indeed, take any g ∈ G and h ∈ A.

Thus, g = (x, y) and h = (a, eB) for some a, x ∈ A and y ∈ B. Then

g−1 = (x−1, y−1), so ghg−1 = (x, y)(a, eB)(x−1, y−1) = (xax−1, yeBy
−1) =

(xax−1, eB) ∈ Ã. Thus, Ã is normal by Theorem 20.2.

Example 6. Let F be a field. Let

G =

{(
a b
0 c

)
: a, b, c ∈ F, ac 6= 0

}
and H =

{(
1 b
0 1

)
: b ∈ F

}
In Lecture 12 we proved that G is a subgroup of GL2(F ) (so G itself is a

group). We also know that H is a subgroup GL2(F ) (by Homework #7.5);

since clearly H ⊆ G, it follows that H is a subgroup of G.

Using conjugation criterion, it is not difficult to check that H is normal

in G.
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