Subgroups

Definition: A subset H of a group G is a subgroup of G if H is itself a group under the operation in G.

Note: Every group G has at least two subgroups: G itself and the subgroup $\{e\}$, containing only the identity element. All other subgroups are said to be proper subgroups.

Examples

1. $\operatorname{GL}(n, \mathrm{R})$, the set of invertible $n \| n$ matrices with real entries is a group under matrix multiplication. We denote by $\operatorname{SL}(n, \mathrm{R})$ the set of $n \| n$ matrices with real entries whose determinant is equal to $1 . \operatorname{SL}(n, \mathrm{R})$ is a proper subgroup of $\mathrm{GL}(n, \mathrm{R})$. ($\mathrm{GL}(n, \mathrm{R})$, is called the general linear group and $\operatorname{SL}(n, \mathrm{R})$ the special linear group.)
2. In the group D_{4}, the group of symmetries of the square, the subset $\left\{e, r, r^{2}, r^{3}\right\}$ forms a proper subgroup, where r is the transformation defined by rotating $\frac{\square}{2}$ units about the z axis.
3. In Z_{9} under the operation + , the subset $\{0,3,6\}$ forms a proper subgroup.

Problem 1: Find two different proper subgroups of S_{3}.
We will prove the following two theorems in class:
Theorem: Let H be a nonempty subset of a group G. H is a subgroup of G iff
(i) H is closed under the operation in G and
(ii) every element in H has an inverse in H.

For finite subsets, the situation is even simpler:
Theorem: Let H be a nonempty finite subset of a group G. H is a subgroup of G iff H is closed under the operation in G.

Problem 2: Let H and K be subgroups of a group G.
(a) Prove that $H \Pi K$ is a subgroup of G.
(b) Show that $H \sqcap K$ need not be a subgroup

Example: Let Z be the group of integers under addition. Define H_{n} to be the set of all multiples of n. It is easy to check that H_{n} is a subgroup of Z. Can you identify the subgroup $H_{n} \square H_{m}$? Try it for $H_{6} \square H_{9}$.

Note that the proof of part (a) of Problem 2 can be extended to prove that the intersection of any number of subgroups of G, finite or infinite, is again a subgroup.

Cyclic Groups and Subgroups

We can always construct a subset of a group G as follows:
Choose any element a in G. Define $\langle a\rangle=\left\{a^{n} \mid n \square Z\right\}$, i.e. $\langle a\rangle$ is the set consisting of all powers of a.

Problem 3: Prove that $\langle a\rangle$ is a subgroup of G.
Definition: $\langle a\rangle$ is called the cyclic subgroup generated by a. If $\langle a\rangle=G$, then we say that G is a cyclic group. It is clear that cyclic groups are abelian.

For the next result, we need to recall that two integers a and n are relatively prime if and only if $\operatorname{gcd}(a, n)=1$. We have proved that if $\operatorname{gcd}(a, n)=1$, then there are integers x and y such that $a x+b y=1$. The converse of this statement is also true:

Theorem: Let a and n be integers. Then $\operatorname{gcd}(a, n)=1$ if and only if there are integers x and y such that $a x+b y=1$.

Problem 4: (a) Let $\left.U_{n}=\{a\rceil Z_{n} \mid \operatorname{gcd}(a, n)=1\right\}$. Prove that U_{n} is a group under multiplication modulo n. (U_{n} is called the group of units in Z_{n}.)
(b) Determine whether or not U_{n} is cyclic for $n=7,8,9,15$.

We will prove the following in class.
Theorem: Let G be a group and $a \sqcap G$.
(1) If a has infinite order, then $\langle a\rangle$ is an infinite subgroup consisting of the distinct elements a^{k} with $k \sqcap Z$.
(2) If a has finite order n, then $\langle a\rangle$ is a subgroup of order n and $\langle a\rangle=\left\{e=a^{0}, a^{1}, a^{2}, \ldots q^{n \square 1}\right\}$.

Theorem: Every subgroup of a cyclic group is cyclic.
Problem 5: Find all subgroups of U_{18}.
Note: When the group operation is addition, we write the inverse of a by $\| a$ rather than $a^{\square \square}$, the identity by 0 rather than e, and a^{k} by $k a$. For example, in the group of integers under addition, the subgroup generated by 2 is $\langle 2\rangle=\{2 k \mid k \square Z\}$.

Problem 6: Show that the additive group $Z_{2} \square Z_{3}$ is cyclic, but $Z_{2} \square Z_{2}$ is not.

Problem 7: Let G be a group of order n. Prove that G is cyclic if and only if G contains an element of order n.

The notion of cyclic group can be generalized as follows. : Let S be a nonempty subset of a group G. Let $\langle S\rangle$ be the set of all possible products, in every order, of elements of S and their inverses.
We will prove the following theorem in class.
Theorem: Let S be a nonempty subset of a group G.
(1) $\langle S\rangle$ is a subgroup of G that contains S.
(2) If H is a subgroup of G that contains S, then H contains $\langle S\rangle$.
(3) $\langle S\rangle$ is the intersection of all subgroups of G that contain S.

The second part of this last theorem states that $\langle S\rangle$ is the smallest subgroup of G that contains $\langle S\rangle$. The group $\langle S\rangle$ is called the subgroup of G generated by S.
Note that when $S=\{a\},\langle S\rangle$ is just the cyclic subgroup generated by a. In the case when $\langle S\rangle=G$, we say that G is generated by S, and the elements of S are called generators of G.

Example: Recall that we showed that every element in D_{4} could be represented by r^{k} or $a r^{k}$ for $\mathrm{k}=0,1,2,3$, where r is the transformation defined by rotating $\frac{\square}{2}$ units about the z-axis, and a is rotation // units about the line $y=x$ in the $x-y$ plane. Thus D_{4} is generated by $S=\{a, r\}$.

Problem 8: Show that U_{15} is generated by $\{2,13\}$.

Cyclic Groups

Cyclic groups are groups in which every element is a power of some fixed element. (If the group is abelian and I'm using + as the operation, then I should say instead that every element is a multiple of some fixed element.) Here are the relevant definitions.

Definition. Let G be a group, $g \in G$. The order of g is the smallest positive integer n such that $g^{n}=1$. If there is no positive integer n such that $g^{n}=1$, then g has infinite order.

In the case of an abelian group with + as the operation and 0 as the identity, the order of g is the smallest positive integer n such that $n g=0$.

Definition. If G is a group and $g \in G$, then the subgroup generated by g is

$$
\langle g\rangle=\left\{g^{n} \mid n \in \mathbb{Z}\right\}
$$

If the group is abelian and I'm using + as the operation, then

$$
\langle g\rangle=\{n g \mid n \in \mathbb{Z}\}
$$

Definition. A group G is cyclic if $G=\langle g\rangle$ for some $g \in G$. g is a generator of $\langle g\rangle$.
If a generator g has order $n, G=\langle g\rangle$ is cyclic of order n. If a generator g has infinite order, $G=\langle g\rangle$ is infinite cyclic.

Example. (The integers and the integers $\bmod \mathbf{n}$ are cyclic) Show that \mathbb{Z} and \mathbb{Z}_{n} for $n>0$ are cyclic.
\mathbb{Z} is an infinite cyclic group, because every element is a multiple of 1 (or of -1). For instance, $117=117 \cdot 1$.
(Remember that " $117 \cdot 1$ " is really shorthand for $1+1+\cdots+1-1$ added to itself 117 times.)
In fact, it is the only infinite cyclic group up to isomorphism.
Notice that a cyclic group can have more than one generator.
If n is a positive integer, \mathbb{Z}_{n} is a cyclic group of order n generated by 1 .
For example, 1 generates \mathbb{Z}_{7}, since

$$
\begin{array}{r}
1+1=2 \\
1+1+1=3 \\
1+1+1+1=4 \\
1+1+1+1+1=5 \\
1+1+1+1+1+1=6 \\
1+1+1+1+1+1+1=0
\end{array}
$$

In other words, if you add 1 to itself repeatedly, you eventually cycle back to 0 .

a cyclic group of order 7

Notice that 3 also generates \mathbb{Z}_{7} :

$$
\begin{aligned}
3+3 & =6 \\
3+3+3 & =2 \\
3+3+3+3 & =5 \\
3+3+3+3+3 & =1 \\
3+3+3+3+3+3 & =4 \\
3+3+3+3+3+3+3 & =0
\end{aligned}
$$

The "same" group can be written using multiplicative notation this way:

$$
\mathbb{Z}_{7}=\left\{1, a, a^{2}, a^{3}, a^{4}, a^{5}, a^{6}\right\}
$$

In this form, a is a generator of \mathbb{Z}_{7}.
It turns out that in $\mathbb{Z}_{7}=\{0,1,2,3,4,5,6\}$, every nonzero element generates the group.
On the other hand, in $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$, only 1 and 5 generate.

Lemma. Let $G=\langle g\rangle$ be a finite cyclic group, where g has order n. Then the powers $\left\{1, g, \ldots, g^{n-1}\right\}$ are distinct.

Proof. Since g has order $n, g, g^{2}, \ldots g^{n-1}$ are all different from 1 .
Now I'll show that the powers $\left\{1, g, \ldots, g^{n-1}\right\}$ are distinct. Suppose $g^{i}=g^{j}$ where $0 \leq j<i<n$. Then $0<i-j<n$ and $g^{i-j}=1$, contrary to the preceding observation.

Therefore, the powers $\left\{1, g, \ldots, g^{n-1}\right\}$ are distinct.
Lemma. Let $G=\langle g\rangle$ be infinite cyclic. If m and n are integers and $m \neq n$, then $g^{m} \neq g^{n}$.
Proof. One of m, n is larger - suppose without loss of generality that $m>n$. I want to show that $g^{m} \neq g^{n}$; suppose this is false, so $g^{m}=g^{n}$. Then $g^{m-n}=1$, so g has finite order. This contradicts the fact that a generator of an infinite cyclic group has infinite order. Therefore, $g^{m} \neq g^{n}$. \quad.

The next result characterizes subgroups of cyclic groups. The proof uses the Division Algorithm for integers in an important way.

Theorem. Subgroups of cyclic groups are cyclic.
Proof. Let $G=\langle g\rangle$ be a cyclic group, where $g \in G$. Let $H<G$. If $H=\{1\}$, then H is cyclic with generator 1. So assume $H \neq\{1\}$.

To show H is cyclic, I must produce a generator for H. What is a generator? It is an element whose powers make up the group. A thing should be smaller than things which are "built from" it - for example, a brick is smaller than a brick building. Since elements of the subgroup are "built from" the generator, the generator should be the "smallest" thing in the subgroup.

What should I mean by "smallest"?
Well, G is cyclic, so everything in G is a power of g. With this discussion as motivation, let m be the smallest positive integer such that $g^{m} \in H$.

Why is there such an integer m ? Well, H contains something other than $1=g^{0}$, since $H \neq\{1\}$. That "something other" is either a positive or negative power of g. If H contains a positive power of g, it must contain a smallest positive power, by well ordering.

On the other hand, if H contains a negative power of g - say g^{-k}, where $k>0$ - then $g^{k} \in H$, since H is closed under inverses. Hence, H again contains positive powers of g, so it contains a smallest positive power, by Well Ordering.

So I have g^{m}, the smallest positive power of g in H. I claim that g^{m} generates H. I must show that every $h \in H$ is a power of g^{k}. Well, $h \in H<G$, so at least I can write $h=g^{n}$ for some n. But by the Division Algorithm, there are unique integers q and r such that

$$
n=m q+r, \quad \text { where } \quad 0 \leq r<m
$$

It follows that

$$
g^{n}=g^{m q+r}=\left(g^{m}\right)^{q} \cdot g^{r}, \quad \text { so } \quad h=\left(g^{m}\right)^{q} \cdot g^{r}, \quad \text { or } \quad g^{r}=\left(g^{m}\right)^{-q} \cdot h .
$$

Now $g^{m} \in H$, so $\left(g^{m}\right)^{-q} \in H$. Hence, $\left(g^{m}\right)^{-q} \cdot h \in H$, so $g^{r} \in H$. However, g^{m} was the smallest positive power of g lying in H. Since $g^{r} \in H$ and $r<m$, the only way out is if $r=0$. Therefore, $n=q m$, and $h=g^{n}=\left(g^{m}\right)^{q} \in\left\langle g^{m}\right\rangle$.

This proves that g^{m} generates H, so H is cyclic.

Example. (Subgroups of the integers) Describe the subgroups of \mathbb{Z}.
Every subgroup of \mathbb{Z} has the form $n \mathbb{Z}$ for $n \in \mathbb{Z}$.
For example, here is the subgroup generated by 13:

$$
13 \mathbb{Z}=\langle 13\rangle=\{\ldots-26,-13,0,13,26, \ldots\}
$$

Example. Consider the following subset of \mathbb{Z} :

$$
H=\{30 x+42 y+70 z \mid x, y, z \in \mathbb{Z}\}
$$

(a) Prove that H is a subgroup of \mathbb{Z}.
(b) Find a generator for H.
(a) First,

$$
0=30 \cdot 0+42 \cdot 0+70 \cdot 0 \in H
$$

If $30 x+42 y+70 z \in H$, then

$$
-(30 x+42 y+70 z)=30(-x)+42(-y)+70(-z) \in H
$$

If $30 a+42 b+70 c, 30 d+42 e+70 f \in H$, then

$$
(30 a+42 b+70 c)+(30 d+42 e+70 f)=30(a+d)+42(b+e)+70(c+f) \in H
$$

Hence, H is a subgroup. $\quad \square$
(b) Note that $2=(30,42,70)$. I'll show that $H=\langle 2\rangle$.

First, if $30 x+42 y+70 z \in H$, then

$$
30 x+42 y+70 z=2(15 x+21 y+35 z) \in\langle 2\rangle
$$

Therefore, $H \subset\langle 2\rangle$.
Conversely, suppose $2 n \in\langle 2\rangle$. I must show $2 n \in H$.
The idea is to write 2 as a linear combination of 30,42 , and 70 . I'll do this in two steps.
First, note that $(30,42)=6$, and

$$
30 \cdot 3+42 \cdot(-2)=6
$$

(You can do this by juggling numbers or using the Extended Euclidean algorithm.) Now $(6,70)=2$, and

$$
6 \cdot 12+70 \cdot(-1)=2
$$

Plugging $6=30 \cdot 3+42 \cdot(-2)$ into the last equation, I get

$$
\begin{array}{r}
(30 \cdot 3+42 \cdot(-2)) \cdot 12+70 \cdot(-1)=2 \\
\quad 30 \cdot 36+42 \cdot(-24)+70 \cdot(-1)=2
\end{array}
$$

Now multiply the last equation by n :

$$
2 n=30 \cdot 36 n+42 \cdot(-24 n)+70 \cdot(-n) \in H
$$

This shows that $\langle 2\rangle \subset H$.
Therefore, $H=\langle 2\rangle$.

Lemma. Let G be a group, and let $g \in G$ have order m. Then $g^{n}=1$ if and only if m divides n.
Proof. If m divides n, then $n=m q$ for some q, so $g^{n}=\left(g^{m}\right)^{q}=1$.
Conversely, suppose that $g^{n}=1$. By the Division Algorithm,

$$
n=m q+r \quad \text { where } \quad 0 \leq r<m
$$

Hence,

$$
g^{n}=g^{m q+r}=\left(g^{m}\right)^{q} g^{r} \quad \text { so } \quad 1=g^{r}
$$

Since m is the smallest positive power of g which equals 1 , and since $r<m$, this is only possible if $r=0$. Therefore, $n=q m$, which means that m divides $n . \quad \square$

Example. (The order of an element) Suppose an element g in a group G satisfies $g^{45}=1$. What are the possible values for the order of g ?

The order of g must be a divisor of 45 . Thus, the order could be

$$
1, \quad 3, \quad 5, \quad 9, \quad 15, \quad \text { or } \quad 45
$$

And the order is certainly not (say) 7, since 7 doesn't divide 45 .

Thus, the order of an element is the smallest power which gives the identity the element in two ways. It is smallest in the sense of being numerically smallest, but it is also smallest in the sense that it divides any power which gives the identity.

Next, I'll find a formula for the order of an element in a cyclic group.
Proposition. Let $G=\langle g\rangle$ be a cyclic group of order n, and let $m<n$. Then g^{m} has order $\frac{n}{(m, n)}$.
Remark. Note that the order of g^{m} (the element) is the same as the order of $\left\langle g^{m}\right\rangle$ (the subgroup).
Proof. Since (m, n) divides m, it follows that $\frac{m}{(m, n)}$ is an integer. Therefore, n divides $\frac{m n}{(m, n)}$, and by the last lemma,

$$
\left(g^{m}\right)^{\frac{n}{(m, n)}}=1
$$

Now suppose that $\left(g^{m}\right)^{k}=1$. By the preceding lemma, n divides $m k$, so

$$
\frac{n}{(m, n)} \left\lvert\, k \cdot \frac{m}{(m, n)} .\right.
$$

However, $\left(\frac{n}{(m, n)}, \frac{m}{(m, n)}\right)=1$, so $\frac{n}{(m, n)}$ divides k. Thus, $\frac{n}{(m, n)}$ divides any power of g^{m} which is 1 , so it is the order of g^{m}. $\quad \square$

In terms of \mathbb{Z}_{n}, this result says that $m \in \mathbb{Z}_{n}$ has order $\frac{n}{(m, n)}$.

Example. (Finding the order of an element) Find the order of the element a^{32} in the cyclic group $G=\left\{1, a, a^{2}, \ldots a^{37}\right\}$. (Thus, G is cyclic of order 38 with generator a.)

In the notation of the Proposition, $n=38$ and $m=32$. Since $(38,32)=2$, it follows that a^{32} has order $\frac{38}{2}=19$.

Example. (Finding the order of an element) Find the order of the element $18 \in \mathbb{Z}_{30}$.
In this case, I'm using additive notation instead of multiplicative notation. The group is cyclic with order $n=30$, and the element $18 \in \mathbb{Z}_{30}$ corresponds to a^{18} in the Proposition - so $m=18$.
$(18,30)=6$, so the order of 18 is $\frac{30}{6}=5$.

Next, I'll give two important Corollaries of the proposition.
Corollary. The generators of $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$ are the elements of $\{0,1,2, \ldots, n-1\}$ which are relatively prime to n.

Proof. If $m \in\{0,1,2, \ldots, n-1\}$ is a generator, its order is n. The Proposition says its order is $\frac{n}{(m, n)}$. Therefore, $n=\frac{n}{(m, n)}$, so $(m, n)=1$.

Conversely, if $(m, n)=1$, then the order of m is

$$
\frac{n}{(m, n)}=\frac{n}{1}=n .
$$

Therefore, m is a generator of \mathbb{Z}_{n}.

1 Lagrange's theorem

Definition 1.1. The index of a subgroup H in a group G, denoted $[G: H]$, is the number of left cosets of H in $G([G: H]$ is a natural number or infinite).

Theorem 1.2 (Lagrange's Theorem). If G is a finite group and H is a subgroup of G then $|H|$ divides $|G|$ and

$$
[G: H]=\frac{|G|}{|H|}
$$

Proof. Recall that (see lecture 16) any pair of left cosets of H are either equal or disjoint. Thus, since G is finite, there exist $g_{1}, \ldots, g_{n} \in G$ such that

- $G=\cup_{i=1}^{n} g_{i} H$ and
- for all $1 \leq i<j \leq n, g_{i} H \cap g_{j} H=\emptyset$.

Since $n=[G: H]$, it is enough to now show that each coset of H has size $|H|$.
Suppose $g \in G$. The map $\varphi_{g}: H \rightarrow g H: h \mapsto g h$ is surjective by definition. The map φ_{g} is injective; for whenever

$$
g h_{1} \ominus \varphi_{g}\left(h_{1}\right)=\varphi_{g}\left(h_{2}\right)=g h_{2}
$$

, multiplying on the left by g^{-1}, we have that $h_{1}=h_{2}$. Thus each coset of H in G has size $|H|$.
Thus

$$
|G|=\sum_{i=1}^{n}\left|g_{i} H\right|=\sum_{i=1}^{n}|H|=[G: H]|H|
$$

Note that in the above proof we could have just as easily worked with right cosets. Thus if G is a finite group and H is a subgroup of G then the number of left cosets is equal to the number of right cosets. More generally, the map $g H \mapsto \mathrm{Hg}^{-1}$ is a bijection between the set of left cosets of H in G and the set of right cosets of H in G.

Corollary 1.3. Let G be a finite group. For all $x \in G,|x|$ divides $|G|$. In particular, for all $x \in G, x^{|G|}=1$.
Proof. By Lagrange's theorem $|x|=|\langle x\rangle|$ divides $|G|$.
Corollary 1.4. Every group of prime order is cyclic.
Proof. Let G be a finite group with $|G|$ prime. Take $x \in G \backslash\{1\}$. By lagrange, $|x|$ divides G and thus, since $|G|$ is prime, $|x|=|G|$ or $|G|=1$. Since $x \neq 1,|x| \neq 1$. Thus $|x|=|G|$ and so, $\langle x\rangle=G$.

Example: The converse of Lagrange's theorem does not hold. The group A_{4} is of size 12 and has no subgroup of size 6 . See exercise sheet 8 (Recall from linear algebra that A_{4} is the group of all even permutations on 4 elements concretely: the set of permutations (123), (132), (234), (243), (134), (143), (124), (142), (12)(34), (13)(24), (14)(23), e).

Definition 1.5. Let G be a group and S, T subsets of G. We write

$$
S T:=\{s t \mid s \in S \text { and } t \in T\} .
$$

Proposition 1.6. If K and H are subgroups of a finite group G then

$$
|H K||H \cap K| \xlongequal[£]{£}|H||K| .
$$

Proof. Let $\varphi: H \times K \rightarrow H K$ be the map defined by $\varphi(h, k):=h k$. This map is surjective by definition.

Claim: If $h \in H$ and $k \in K$ then $\varphi^{-1}(h k)=\left\{\left(h d^{-1}, d k\right) \mid d \in K \cap H\right\}$.
Clearly, if $d \in K \cap H$ and $h^{\prime}=h d^{-1}, k^{\prime}=d k$ then $h^{\prime} \in H, k^{\prime} \in K$ and $h^{\prime} k^{\prime}=h k$. Conversely, if $h^{\prime} \in H, k^{\prime} \in K$ and $h^{\prime} k^{\prime}=h k$ then $k^{\prime} k^{-1}=h^{\prime-1} h \in K \cap H, h^{\prime}=h\left(h^{-1} h\right)^{-1}$ and $k^{\prime}=\left(h^{\prime-1} h\right) k$. This proves the claim.

Therefore for each $x \in H K,\left|\varphi^{-1}(x)\right|=|H \cap K|$. So,

$$
|H K||H \cap K|=|H \times K|=|H||K| .
$$

20. Normal subgroups

20.1. Definition and basic examples. Recall from last time that if G is a group, H a subgroup of G and $g \in G$ some fixed element the set $g H=\{g h: h \in H\}$ is called a left coset of H.

Similarly, the set $H g=\{h g: h \in H\}$ is called a right coset of H.
Definition. A subgroup H of a group G is called normal if $g H=H g$ for all $g \in G$.

The main motivation for this definition comes from quotient groups which will be discussed in a couple of weeks.

Let us now see some examples of normal and non-normal subgroups.
Example 1. Let G be an abelian group. Then any subgroup of G is normal.
Example 2. Let G be any group. Recall that the center of G is the set

$$
Z(G)=\{x \in G: g x=x g \text { for all } g \in G\} .
$$

By Homework\#6.3, $Z(G)$ is a subgroup of G. Clearly, $Z(G)$ is always a normal subgroup of G; moreover, any subgroup of $Z(G)$ is normal in G.

Example 3. $G=S_{3}, H=\langle(1,2,3)\rangle=\{e,(1,2,3),(1,3,2)\}$.

Let $g=(1,2)$. Then

$$
\begin{aligned}
g H & =\{(1,2),(1,2)(1,2,3),(1,2)(1,3,2)\}=\{(1,2),(2,3),(1,3)\} \\
H g & =\{(1,2),(1,2,3)(1,2),(1,3,2)(1,2)\}=\{(1,2),(1,3),(2,3)\}
\end{aligned}
$$

Note that while there exists $h \in H$ s.t. $g h \neq h g$, we still have $g H=H g$ as sets.

The above computation does not yet prove that H is normal in G since we only verified $g H=H g$ for a single g. To prove normality we would need to do the same for all $g \in G$. However, there is an elegant way to prove normality in this example, given by the following proposition.

Proposition 20.1. Let G be a group and H a subgroup of index 2 in G. Then H is normal in G.

Proof. This will be one of the problems in Homework\#10.
Recall from Lecture 19 that the index of H in G, denoted by $[G: H]$, is the number of left cosets of H in G and that if G is finite, then $[G: H]=\frac{|G|}{|H|}$. In

Example 3 we have $|G|=6$ and $|H|=3$, so $[G: H]=2$ and Proposition 20.1 can be applied.

Finally, we give an example of a non-normal subgroup:
Example 4. $G=S_{3}, H=\langle(1,2)\rangle=\{e,(1,2)\}$.
To prove this subgroup is not normal it suffices to find a single $g \in G$ such that $g H \neq H g$. We will show that $g=(1,3)$ has this property.

We have $g H=\{(1,3),(1,3)(1,2)\}=\{(1,3),(1,2,3)\}$ and $H g=\{(1,3),(1,2)(1,3)\}=$ $\{(1,3),(1,3,2)\}$. Since $\{(1,3),(1,2,3)\} \neq\{(1,3),(1,3,2)\}$ (as sets), H is not normal.

20.2. Conjugation criterion of normality.

Definition. Let G be a group and fix $g, x \in G$. The element $g x g^{-1}$ is called the conjugate of x by g.

Theorem 20.2 (Conjugation criterion). Let G be a group and H a subgroup of G. Then H is normal in $G \Longleftrightarrow$ for all $h \in H$ and $g \in G$ we have ghg ${ }^{-1} \in H$. In other words, H is normal in $G \Longleftrightarrow$ for every element of H, all conjugates of that element also lie in H.

Proof. " \Rightarrow " Suppose that H is normal in G, so for every element $g \in G$ we have $g H=H g$. Hence for every $h \in H$ we have $g h \in g H=H g$, so $g h=h^{\prime} g$ for some $h^{\prime} \in H$. Multiplying both sides on the right by g^{-1}, we get $g h g^{-1} \in H$. Thus, we showed that $g h g^{-1} \in H$ for all $g \in G, h \in H$, as desired.
" \Leftarrow " Suppose now for all $g \in G, h \in H$ we have $g h g^{-1} \in H$. This means that $g h g^{-1}=h^{\prime}$ for some $h^{\prime} \in H$ (depending on g and h). The equality $g h g^{-1}=h^{\prime}$ can be rewritten as $g h=h^{\prime} g$. Since $h^{\prime} g \in H g$ by definition, we get that $g h \in H g$ for all $h \in H, g \in G$, so $g H \subseteq H g$ for all $g \in G$.

Since the last inclusion holds for all $g \in G$, it will remain true if we replace g by g^{-1}. Thus, $g^{-1} H \subseteq H g^{-1}$ for all $g \in G$. Using Lemma 19.1 (associativity of multiplication of subsets in a group), multiplying the last inclusion by g on both left and right, we get $H g \subseteq g H$.

Thus, for all $g \in G$ we have $g H \subseteq H g$ and $H g \subseteq g H$, and therefore $g H=H g$.

20.3. Applications of the conjugation criterion.

Theorem 20.3. Let G and G^{\prime} be groups and $\varphi: G \rightarrow G^{\prime}$ a homomorphism. Then $\operatorname{Ker}(\varphi)$ is a normal subgroup of G.

Proof. Let $H=\operatorname{Ker}(\varphi)$. We already know from Lecture 16 that H is a subgroup of G, so it suffices to check normality. We will do this using the conjugation criterion.

So, take any $h \in H$ and $g \in G$. By definition of the kernel we have $\varphi(h)=e^{\prime}$ (the identity element of $\left.G^{\prime}\right)$. Hence $\varphi\left(g h g^{-1}\right)=\varphi(g) \varphi(h) \varphi\left(g^{-1}\right)=$ $\varphi(g) e^{\prime} \varphi(g)^{-1}=e^{\prime}$, so $g h g^{-1} \in \operatorname{Ker}(\varphi)=H$. Therefore, H is normal by Theorem 20.2.

Here are two more examples of application of the conjugation criterion
Example 5. Let A and B be any groups and $G=A \times B$ their direct product. Let $\widetilde{A}=\left\{\left(a, e_{B}\right): a \in A\right\} \subseteq G$, the set of elements of G whose second component is the identity element of B.

It is not hard to show that \widetilde{A} is a subgroup of G and $\widetilde{A} \cong A$ (one can think of \widetilde{A} as a canonical copy of A in G).

We claim that \tilde{A} is normal in G. Indeed, take any $g \in G$ and $h \in A$. Thus, $g=(x, y)$ and $h=\left(a, e_{B}\right)$ for some $a, x \in A$ and $y \in B$. Then $g^{-1}=\left(x^{-1}, y^{-1}\right)$, so $g h g^{-1}=(x, y)\left(a, e_{B}\right)\left(x^{-1}, y^{-1}\right)=\left(x a x^{-1}, y e_{B} y^{-1}\right)=$ $\left(x a x^{-1}, e_{B}\right) \in \widetilde{A}$. Thus, \widetilde{A} is normal by Theorem 20.2.

Example 6. Let F be a field. Let

$$
G=\left\{\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right): a, b, c \in F, a c \neq 0\right\} \quad \text { and } \quad H=\left\{\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right): b \in F\right\}
$$

In Lecture 12 we proved that G is a subgroup of $G L_{2}(F)$ (so G itself is a group). We also know that H is a subgroup $G L_{2}(F)$ (by Homework \#7.5); since clearly $H \subseteq G$, it follows that H is a subgroup of G.

Using conjugation criterion, it is not difficult to check that H is normal in G.

Courtesy (Contents are sourced from) : ---

1. Subgroup
https://web.ma.utexas.edu/users/rodin/343K/Subgroups.pdf
2. Lagrange's theorem
http://www.math.uni-konstanz.de
3. Normal subgroups
http://people.virginia.edu
4. Cyclic Groups
http://sites.millersville.edu
