CHAPTER 2

ELEMENTS OF ENSEMBLE THEORY

IN THE preceding chapter we noted that, for a given macrostate (N, V, E), a statis-
tical system, at any time ¢, is equally likely to be in any onc of an extremely large
number of distinct microstates. As time passes, the system continually switches
from one microstatc to another, with the result that, over a reasonable span of
time, all onc observes is a behavior “averaged” over the variety of microstates
through which the system passcs. It may, thercfore, make sense if we consider,
at a single instant of time, a rather large number of systems-—all being some
sort of “mental copies™ of the given system—which are characterized by the
same macrostate as the original system but are, naturally enough, in all sorts
of possible microstates. Then, under ordinary circumstances, we may expect that
the average behavior of any system in this collection, which we call an ensemble,
would be identical with the time-averaged behavior of the given system. It is on
the basis of this expectation that we proceed to develop the so-called ensemble
theory.

For classical systems, the most appropriate workshop for developing the desired
formalism is the phase space. Accordingly, we begin our study of the various
ensembles with an analysis of the basic features of this space.

2.1. Phase space of a classical system

The microstate of a given classical system, at any time ¢, may be defined by
specifying the instantaneous positions and momenta of all the particles constituting
the system. Thus, if N is the number of particles in the system, the definition of a
microstate requires the specification of 3N position coordinates g1, g2, . .., g3y and
3N momentum coordinates py. pa. . ... pav. Geometrically, the set of coordinates
(¢i, pi), where i = 1,2, ...,3N, may be regarded as a point in a space of 6N
dimensions. We refer to this space as the phase space, and the phase point (¢i, p:)
as a representative point, of the given system.

Of course, the coordinates g; and p; are functions of the time f; the precise
manner in which they vary with ¢ is determined by the canonical equations of
motion,
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5 = 8H (qi, pi)
! - a .
Pi i=1.2.....3N, (1)
. _ _BH(QI- P:)
P ag;

where H(gq.. pi) is the Hamiltonian of the system. Now, as time passes, the set
of coordinates (gi, pi), which also defines the microstate of the system, undergoes
a continual change. Correspondingly, our representative point in the phase space
carves out a trajectory whose direction, at any time ¢, is determined by the velocity
vector v = (§i, pi), which in turn is given by the equations of motion (1). It is not
difficult to see that the trajectory of the representative point must remain within
a limited region of the phase space; this is so because 4 finite volume V directly
limits the values of the coordinates ¢;, while a finite energy E limits the values of
both the g; and the p; [through the Hamiltonian H (g;. pi)]- In particular, if the total
encrgy of the system is known {0 have a precise value, say E. the corresponding
trajectory will be restricted to the “hypersurface™

H(qi. pi))=E (2)

of the phase space; on the other hand, if the total energy may lie anywhere in
the range (E — 1A, E + 1 1), the corresponding trajectory will be restricted to the
“hypershell” defined by these limits.

Now, if we consider an ensemble of systems (i.e. the given system, along with
a large number of mental copies of ir) then, at any time ¢, the various members of
the ensemble will be in all sorts of possible microstates; indeed, each one of these
icrostates must be consistent with the given macrostate which is supposed to be
common to all members of the ensemble. In the phase space, the corresponding
picture will consist of a swarm of representative points, one for each member of the
ensemble, all Iying within the “allowed” region of this space. As time passes, every
member of the ensemble undergoes a continual change of microstaies; correspond-
ingly, the representative points constituting the swarm continually move along
their respective trajectories. The overall picture of this movement possesses some
important features which are best illustrated in terms of what we call a density
function p(q, p;1). This function is such that, at any time ¢, the number of repre-
sentative points in the “volume element” (d¥g d*"p) around the point (g. p) of
the phase space is given by the product p(g. p; 1) d*g d*¥p ! Clearly, the density
function p(g. p;t) symbolizes the manner in which the members of the ensemble
are distributed over all possible microstates at different instants of time. Accord-
ingly, the ensemble average (f) of a given physical quantity f(g. p) which may
be different for systems in different microstates, would be given by

J f(q. p)etg, p;tyd™qd>p
fp(q. p;t)d3Nq d:wp :
The integratic  in (3) extend over the whole of the phase space; however, it is

only the popu  :d regions of the phase space (o # 0) that really contribute. We
note that, in general, the ensemble average (f) may itself be a function of time.

(f) = (3)
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An ensemble is said to be stationary if p d¢ .ot depend explicitly on time,
i.e. at all times
L (4)
a
Clearly, for such an ensemble the average value (f) of any physical quantity
f (g, p) will be independent of time. Naturally, a stationary ensemble qualifies to
represent a system in equilibrium. To determine the circumstances under which
eqn. (4) may hold, we have to make a rather detailed study of the movement of

the representative points in the phase space. .

2.2. Liouville’s theorem and its consequences

Consider an arbitrary “volume” w in the relevant region of the phase space and
let the “surface” enclosing this volume be denoted by o} see Fig. 2.1. Then, the
rate at which the number of representative points in this volume increases with
time is written as

d
3 pdw, (1)

w

oAt

[2)

FIG. 2.1. The “hydrodynamics” of the representative points in the phase space.

where dw = (d*Mg d*p). On the other hand, the ner rate at which the represen-
tative points “flow” out of  (across the bounding surface o) is given by

[ p(v-t)do; 2)

here, v is the velocity vector of the representative points in the region of the
surface element do while # is the (outward) unit vector normal to this element.
By the divergence theorem, (2) can be written as

[ div(pv) dw; 3)

of course, the operation of divergence here means the following;:

3N

0 d
div(pv) = Z {B_q-(pq'.) + ‘(,;(Pi’i)} . 4)

i=1
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In view of fact that there are no “sources” or “sinks” in the phase space and
hence the total number of representative points remains conserved,? we have, by

(1) and (3),

%/pdwz —/div(p'v)dw. (5)
that iS) a
] {75 + div(p'v)} dw = 0. (6)

w

Now, the necessary and sufficient condition that integral (6) vanish for all arbitrary
volumes o is that the integrand itself vanish everywhere in the relevant region of
the phase space. Thus, we must have

.,
a—’: + div(pv) = 0, %)

which is the equation of continuity for the swarm of the representative points.
Combining (4) and (7), we obtain

ap X [ ap ap N roqi Opi
-+ (—q,—+—'.-)+p (—‘+——')=0. (8)
ot ; dg; api P ’z:]: 9q; '

The last group of terms vanishes identically because, by the equations of motion,
we have, for all i,

8qi _ O*H(gi, pi) _ 8H(gi, pi) _ _9pi
ag; 0q;a pi dpioq; api

Further, since p = p(q,. pi;t), the remaining terms in (8) may be combined to
form the “total” time derivative of p, with the result that

dp dp

At a
Equation (10) embodies the so-called Liouville's theoremn (1838). According to this
theorem, the “local” density of the representative points, as viewed by an observer
moving with a representative point, stays constant in time. Thus, the swarm of the
representative points moves in the phase space in essentially the same manner as
an incompressible fluid moves in the physical space!

A distinction must be made, however, between eqn. (10) on one hand and
cqn. (2.1.4) on the other. While the former derives from the basic mechanics of
the particles and is therefore quite generally true, the latter is only a requirement
for equilibrium which, in a given case, may or may not be satisfied. The condition
that ensures simultaneous validity of the two equations is clearly

N fop. ap .
[p.H]1=) 5,0 T ap P = 0. (11)

(9)

+[p.H] = 0. (10)?

i=1
Now, one possible way of satisfying (11) is to assume that p, which is already

assumed to have no explicit dependence on time, is independent of the coordinates
(q. p) as well, ie.
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p(q, p) = const. (12)

over the relevant region of the phase space (and, of course, is zero everywhere
else). Physically, this choice corresponds to an ensemble of systems which at
all times are uniformly distributed over all possible microstates. The ensemble
average (2.1.3) then reduces to

(== [ 1apdo 13)
w L]

here, w denotes the total “volume” of the relevant region of the phase space.
Clearly, in this case, any member of the ensemble is equally likely to be in any
one of the various possible microstates, inasmuch as any representative point in
the swarm is equally likely to be in the neighborhood of any phase point in the
allowed region of the phase space. This statement is usually referred to as the
postulate of “equal a priori probabilities” for the various possible microstates (or
for the various volume elements in the allowed region of the phase space); the

resulting ensemble is referred to as the microcanonical ensemble.
A more general way of satisfying (11) is to assume that the dependence of p on
(g, p) comes only through an explicit dependence on the Hamiltonian H (g, p), i.e.

plg. pY = plH (g, p)}; (14)

condition (11) is then identically satisfied. Equation (14) provides a class of density
functions for which the corresponding ensemble is stationary. In Chap. 3 we shall
see that the most natural choice in this class of ensembles is the one for which

plg, p) e exp[—H (q. p)/kT]. (15)

The ensemble so defined is referred to as the canonical ensemble.

2.3. The microcanonical ensemble

In this ensemble the macrostate of a system is defined by the number
of molecules N, the volume V and the energy E. However, in view of the
considerations expressed in Sec. 1.4, we may prefer to specify a range of energy
values, say from (E — %A) to (E+ %A), rather than a sharply defined value
E. With the macrostate specified, a choice still remains for the systems of the
ensemble to be in any one of a large number of possible microstates. In the phase
space, correspondingly, the representative points of the ensemble have a choice to
lic anywhere within a “hypershell” defined by the condition

(E—3b) <H(g. p) < (E+14) (1)

The volume of the phase space enclosed within this shell is given by

~w= [do= ["(d"gd¥"p), (2)

where the primed integration extends only over that mrt of the phase space which
conforms to condition (1). It is clear that @ will { function of the parameters
N, V, E and A.
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Now, the microcanonical ensemble is a collection of systems for which the
density function p is, at all times, given by

p(q. p) =const. if (E—1A) <H(g, p) < (E+%A)}_ 3)

0 otherwise

Accordingly, the expectation value of the number of representative points lying in
a volume element de of the relevant hypershell is simply proportional to dw. In
other words, the a priori probability of finding a representative point in a given
volume element dw is the same as that of finding a representative point in an
equivalent volume element dw located anywhere in the hypershell. In our original
parlance, this means an equal a priori probability for a given member of the
cnsemble to be in any one of the various possible microstates. In view of these
considerations, the ensemble average (f), as given by eqn. (2.2.13), acquires a
simple physical meaning. To see this, we proceed as follows.

Since the ensemble under study is a stationary one, the ensemble average of
any physical quantity f will be independent of time; accordingly, taking a time
average thereof will not produce any new result. Thus

(f) = the ensemble average of f
= the time average of (the ensemble average of f).

Now, the processes of time averaging and ensemble averaging are completely
indcpendent, so the order in which they are performed may be reversed without
causing any change in the value of (f). Thus

{f) = the ensemble average of (the time average of f).

Now, the time average of any physical quantity, taken over a sufficiently long
interval of time, must be the same for every member of the ensemble, for after all
we are dealing with only mental copies of a given system.* Therefore, taking an
ensemble average thereof should be inconsequential, and we may write

{f) = the long-time average of f,

where the latter may be taken over anry member of the ensemble. Furthermore, the
long-time average of a physical quantity is all one obtains by making a measure-
ment of that quantity on the given system; therefore, it may be identified with the
value one expects to obtain through experiment. Thus, we finally have

(f) = fe‘cp- %)

This brings us to the most important result: the ensemble average of any physical
quantity f is identical with the value one expects to obtain on making an appro-
priate measurement on the given system.

The next thing we look for is the establishment of a connection between the
mechanics of the microcanonical ensemble and the thermodynamics of the member
systems. To do this, we observe that there exists a direct correspondence between
the various - ~ ‘rostates of the given system and the various locations in the phase
space. The  ume w (of the allowed region of the phase space) is, therefore, a
direct measure of the multiplicity I' of the microstates accessible to the system.
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To establish a numerical correspondence between w and I', we nced to discover a
fundamental volume wy which could be regarded as “equivalent to one microstatc”.
Once this is done, we may say that, asymptotically,

I' = w/wg. (5

The thermodynamics of the system would then follow in the same way as in
Secs 1.2—1.4, viz. through the relationship

S=kInl =kln(w/wg), etc. (6)

The basic problem then consists in determining ep. From dimensional consid-
erations, see (2), wp must be in the nature of an “angular momentum raised to
the power 3N”. To determine it exactly, we consider certain simplified systems.
both from the point of view of the phase space and from the point of view of the
distribution of quantum states.

2.4. Examples

We consider, first of all, the problem of a classical ideal gas composed of
monatomic particles; see Sec. 1.4. In the microcanonical ensemble, the volume @
of the phase space accessible to the representative points of the (member) systems
is given by

w:f...f’(di"’qdwp), (1)

where the integrations are restricted by the conditions that (i) the particles of the
system are confined in physical space to volume V, and (ii) the total energy of the
system lies between the limits (E — %A) and (E + %A). Since the Hamiltonian in
this case is a function of the p; alone, integrations over the g; can be carried out
straightforwardly; these give a factor of V¥, The remaining integral is

[l @ [ &,
1 kL " 1 1 3N 1
(E—iA Eigl(plf/'lm)ﬁ (E+5A) Zm(E—iA)sz _\".252172(E+5A)

i=1

which is equal to the volume of a 3N-dimensional hypershell, bounded by hyper-
sphercs of radii

J2mE+1a) and \fl2m(E - 10)]

For A « E, this is given by the thickness of the shell, which is almost equal to
A(m/2EY/?, multiplied by the surface area of a 3N-dimensional hypersphere of
radius /(2mE). By eqn. (7) of Appendix C, we obtain for this integral

m \ /2 2573N/2 _
A (Z_E) {[(3N/2) _ 1]!(2"*‘1)(:W IVZ}’

whence
N Ay (2rmE)3N /2

C=FE" 13N -1 S
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Comparing (2) with (1.4.17, 17a), we obtain the desired correspondence, viz.

(m/r)asxmp Eap = h3N;

wee also Problem 2.9. Quite generally, if the system under study has .1~ degrees
of freedom, the desired conversion factor is

w =h"' 3)
In the casc of a single particle, . I~ = 3; accordingly, the number of microstates

available would asymptotically be equal to the volume of the allowed region of the
rhase space divided by #*. Let X£(P) denote the number of microstates available
10 a free particle confined to volume V of the physical space, its momentum p
being less than or equal to a specified value P. Then

V 4z
B3

1
sy~ [ [dady= 5T @)
" opsP
whence we obtain for the number of microstates with momentum lying between
pand p+dp

dX(p) \%4
gpydp = = gp ~ —4np’dp. (5)
dp k
Expressed in terms of the particle energy, these expressions assume the form
V 4m 32
Y(E) = ﬁ?QmE) (6)
e ds v
a(e)de = (&) de = —27(2m)* %1% de. (N
de h3

The next case we shall consider here is that of a one-dimensional simple
harmonic oscillator. The classical expression for the Hamiltonian of this system is

1 1,
H(q, p)= skg + ——p’, (8)
2 2m
where k is the spring constant and m the mass of the oscillating particle. The space
coordinate g and the momentum coordinate p of the system are given by
g=Acos(wt+¢), p=mg=—moA sin(ot+ ¢). 9

1 being the amplitude and « the (angular) frequency of vibration:

w = /(k/m). (10)
The energy of the oscillator is a constant of the motion, and is given by

E = imo’A%. (11)
The phase-space trajectory of the representative point (g, p) of this system is
determined by eliminating 7 between expressions (9) for g(¢) and p(t); we obtain

2

. P
(QE/mew?) = (2mE)

1, (12)
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which is an ellipse, with axes proportional to E and hence area proportional
to E; to be precise, the area of this ellipse is 2zE/w. Now, if we restrict the
oscillator energy to the interval (£ — %A.E + A, its representative point in
the phase space will be confined to the region bounded by elliptical trajectories
corresponding to the energy values (E + 1A) and (E — 1A). The “volume” (in
this case, the area) of this region will be ) )

2r(E+1iA) 27(E-2A ;
(dadp) = r(E+1 )_ 7 ( 2A) :27A_
w w w

(E—%A) <H{g,.p)< (E+%/_\.)
(13)

According to quantum mechanics, the energy eigenvalues of the harmonic oscil-
lator are given by
E,=(n+Yho; n=0.12,... (14)

In terms of phase space, one could say that the representative point of the system
must move along one of the “chosen’™ trajectories, as shown in Fig. 2.2; the area
of the phase space between two consecutive trajectories, for which A = how, is
simply 2mh.’ For arbitrary values of E and A, such that E > A > hw, the number
of eigenstates within the allowed energy interval is very ncarly equal to A/hw.
Hence, the area of the phase space equivalent to one eigenstate is, asymptotically,
given by

wy = 2rAJw)/(A/hw) =270 = h. (15)

FiG. 2.2. Eigenstates of a linear harmonic oscillator, in relation to its phase space.

If, on the other hand, we comsider a system of N harmonic oscillators along the
same lines as above, we armrive at the result: wp = # (see Problem 2.7). Thus, our
findings in these cases are consistent with our earlier result (3).
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2.5. Quantum states and the phase space

At this stage we would like to say a few words on the central role played
here by the Planck constant 4. The best way to appreciate this role is to recall the
implications of the Heisenberg uncertainty principle, according to which we cannot
specify simultaneously both the position and the momentum of a particle exactly.
An element of uncertainty is inherently present and can be expressed as follows:
assuming that all conceivable uncertainties of measurement are eliminated, even
then, by the very nature of things, the product of the uncertainties Ag and Ap in
the simultancous measurement of the canonically conjugate coordinates g and p
would be of order h:

(Aqu)min ~ h. (1)

Thus, it is impossible to define the position of a representative point in the phase
space of the given system more accurately than is allowed by condition (1). In
other words, around any point (g, p) in the (two-dimensional) phase space, there
exists an area of order # within which the position of the representative point
cannot be pin-pointed. In a phase space of 2. | dimensions, the corresponding
“yolume of uncertainty” around any point would be of order ' . Therefore, it
seems reasonable to regard the phase space as made up of elementary cells, of
volume ~ k', and to consider the various positions within such a cell as non-
distinct. These cells could then be put into one-to-one correspondence with the
quantum-mechanical states of the system.

It is, however, obvious that considerations of uncertainty alone cannot give us
the exact value of the conversion factor wy. This could only be done by an actual
counting of microstates on one hand and a computation of volume of the relevant
region of the phase space on the other, as was done in the examples of the previous
section. Clearly, a procedure along these lines could not be possible until after the
work of Schrodinger and others. Historically, however, the first to establish the
result (2.4.3) was Tetrode (1912) who, in his well-known work on the chemical
constant and the entropy of a monatomic gas, assumed that

wy = (zhy" ()

where z was supposed to be an unknown numerical factor. Comparing theoretical
resulis with the experimental data on mercury, Tetrode found that z was very
nearly equal to unity; from this he concluded that “it seems rather plausible that
z is exactly equal to unity, as has already been taken by O. Sackur (1911)".8

In the extreme relativistic limit, the same result was established by Bose (1924).
In his famous treatment of the photon gas, Bose made use of Einstein’s relationship
between the momentum of a photon and the frequency of the associated vibration,

namely

hv
p=—, (3)
C

and observed that, for a photon confined to a three-dimensional cavity of volume
V, the releva~* “volume” of the phase space,

f(d3q dp) = Vinpidp = V(arnh* ) dv, 4)
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would correspond exactly to the Rayleigh expres
V(47w2/c3) dv, (5)

for the number of normal modes of a radiation oscillator, provided that we divide
phase space into elementary cells of volume h* and put these cells into one-to-one
correspondence with the vibrational modes of Rayleigh. It may, however, be added
that a two-fold multiplicity of these states (g = 2) arises from the spin orientations
of the photon (or from the states of polarization of the vibrational modes); this
requires a multiplication of both expressions (4) and (5) by a factor of 2, leaving
the conversion factor #* unchanged.

Problems

2.1. Show that the volume element

3N
do = [ [(dg: dpi)

i=1

of the phase space remains invariant under a canonical transformation of the (gencralized) coordinates
(g. p) to any other set of (generalized} coordinates (Q, P).

[Hint: Beforc considering the most general transformation of this kind, which is referred to as a
contact transformation, it may be helpful to consider a point transformation-onc in which the new
coordinates Q; and the old coordinates g; transform only among themselves.]

2.2. (a) Verify explicitly the invariance of the volume element dw of the phase space of a single
particle under transformation from the Cartesian coordinates (x, y, z, Px» Py» P;) to the
spherical polar coordinates (r, 6, ¢, pr, e, Pg)-

(b) The forcgoing result secms to contradict the ntuitive notion of “equal weights for equal
solid angles”, because the factor sin@ is invisible in the expression for dew. Show that if we
average out any physical quantity, whose dependence on pp and py comes only through
the kinetic encrgy of the particle, then as a result of intcgration over these variables we do
indecd recover the factor sin to appear with the sub-element (6 d¢).

2.3. Starting with the line of zero encrgy and working in the (two-dimensional) phase space of a
classical rotator, draw lines of constant energy which divide phase space into cells of “volume™ h.
Calculate the energies of these states and compare them with the energy eigenvalues of the corre-
sponding quantum-mechanical rotator.

2.4. By evaluating the “volume” of the relevant region of its phase space, show that the number of
microstates available to a rigid rotator with angular momentum < M is (M /h)z. Hence determine the

number of microstates that may be associated with the quantized angular momentum M;= \/[j(j +
1)}k, where j=0,1,2,... or % % g ... Interpret the result physically.
[Hint: 1t simplifies to consider motion in the variables 6 and @, with M2 = pg + (pg/ sin 6)2.]
2.5. Consider a particle of energy E moving in a one-dimensional potential well V(g), such that

dv
il |— &« (m(E — VP2
dg

Show that the allowed values of the momenturn p of the particle are such that

fpdq: (n+%)h.

where # is an integer.

2.6. The generalized coordinates of a simple pendulum are the angular displacement & and the
angular momentum ml*6. Study, both mathematically and graphically, the nature of the corresponding
trajectories in the phase space of the system, and show thar the arca A enclosed by a trajectory is
equal to the product of the total energy E and the time period 1 of the pendulum.
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2.7. Derive i asymptotic expression for the number of ways in which a given energy E can
be distributed among a set of N one-dimensional harmonic oscillators, the energy eigenvalues of the
oscillators being (2 + %)hw; n=0.1,2, ..., and (ii) the corresponding expression for the “volume”
of the relevant region of the phase space of this system. Establish the correspondence between the
wwo results, showing that the conversion factor wp is precisely A" .

2.8. Following the method of Appendix C, replacing egn. (C.4) by the integral

fe o}
f e Tridr=2,
)}

show that

N
Vav = [ ... [ []¢dr} dri) = @R /G
A i=1
0<3; ".'Sn'?l

Using this result, compute the “yolume” of the relevant region of the phase space of an extreme
relativistic gas (€ = pc) of N particles moving in three dimensions. Hence. derive expressions for the
various thermodynamic properties of this system and compare your results with those of Problem 1.7.

2.9. (a) Solve the integral
f. .- f (d.l'l - (1.\,‘3,\')
LM

0< Y Ixl<R
=i

and use it to determine the “volume™ of the relevant region of the phase space of an
extreme relativistic gas (& = pc) of 3N particles moving in one dimension. Determing, as
well, the number of ways of distributing a given encrgy E among this system of particles
and show that, asymptotically, wp = ™.

(b) Compare the thermodynamics of this system with that of the sysiem considered in
Problem 2.8.

Notes

I Note that (g. p) is a further abbreviation of (gi. piY= (q1..--. g3y, Plees s P3v)

2 This means that in the ensemble under consideration neither are any new members being admitted
nor are any old ones being expelled.

3 We recall that the Poisson bracket [p, H] stands for the sum

N
Z (Bp oH dp BH)
dgi dp;  Opidqi )’

i=1

which is identical with the group of terms in the middle of (8).

% To provide a rigorous justification for this assertion is not trivial. One can readily see that if, for
any particular member of the ensemble, the quantity f is averaged only over a short span of time,
the result is bound to depend upon the relevant “subset of microstates™ through which the system
passes during that time. In the phase space, this will mean an averaging over only a “part of the
allowed region™. However, if we employ instead a sufficiently long interval of time, the system maj
be expected to pass through almost all possible microstates “without fear or favor”; consequently, the
result of the averaging process would depend only upon the macrostate of the system, and not upon
a subsct of microstates. Correspondingly, the averaging in the phase space would go over practically
all parts of the allowed region, again “without fear or favor”. In other words, the representative point
of our system will have traversed each and every part of the allowed region almost uniformly. This
statement embodies the so-called ergodic theorem or ergodic hypothesis, which was first introduced
by Beltzmann (1871). According to this hypothesis, the trajectory of a representative point passes, in
the course of time, through each and every point of the relevant region of the phase space. A little
reflection, however, shows that the statement as such requires a qualification; we better replace it
by the so-called quasi-ergodic hypothesis, according to which the trajectory of a representative point
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traverses, in the course of time, any neighborbood of any point of the relevant region. For further
details, see ter Haar (1954, 1955), Farqubar (1964).

Now, when we consider an ensemble of systems, the foregoing statement should hold for every
member of the ensemble; thus, irrespective of the initial (and final) states of the various systems, the
long-time average of any physical quantity f should be the same for every member system,

5 Strictly speaking, the very concept of phase space is invalid in quantum mechanics because there
it is wrong, in principle, 1o assign to a particle the coordinates g and P simudtaneously. Nevertheless,
the ideas discussed here are tenable in the correspondence limit.

6 For a more satisfactory proof, see Sec. 5.5, especially eqn. (5.5.22).



CHAPTER 3

THE CANONICAL ENSEMBLE

IN THE preceding chapter we established the basis of ensemble theory and made
a somewhat detailed study of the microcanonical ensemble. In that ensemble the
macrostate of the systems was defined through a fixed number of particles N,
a fixed volume V and a fixed energy E [or, preferably, a fixed energy range
(E — 34, E + 3A)]. The basic problem then consisted in determining the number
QN,V,E), or (N, V, E;A), of distinct microstates accessible to the system.
From the asymptotic expressions of these numbers, complete thermodynamics
of the system could be derived in a straightforward manner. However, for most
physical systems, the mathematical problem of determining these numbers is quite
formidable. For this reason alone, a search for an alternative approach within the
framework of the ensemble theory seems necessary.

Physically, too, the concept of a fixed energy (or even an energy range) for a
system belonging to the real world does not appear satisfactory. For one thing,
the total energy E of a system is hardly ever measured; for another, it is hardly
possible to keep its value under strict physical control. A far better alternative
appears to be to speak of a fixed temperature 7 of the system—a parameter which
is not only directly observable (by placing a “thermometer” in contact with the
system) but also controllable (by keeping the system in contact with an appropriate
“heat reservoir”). For most purposes, the precise nature of the reservoir is not very
relevant; all one needs is that it should have an infinitely large heat capacity, so
that, irrespective of energy exchange between the system and the reservoir, an
overall constant temperature can be maintained. Now, if the reservoir consists of
an infinitely large number of mental copies of the given system we have once
again an ensemble of systems--this time, however, it is an ensemble in which the
macrostate of the systems is defined through the parameters N, V and 7. Such an
ensemble is referred to as a canonical ensemble.

In the canonical ensemble, the energy E of a system is variable; in principle, it
can take values anywhere between zero and infinity. The question then arises: what
is the probability that, at any time ¢, a system in the ensemble is found to be in one
of the states characterized by the energy value E,?! We denote this probability
by the symbol P,. Clearly, there are two ways in which the dependence of P,
on £, can be f~termined. One consists in regarding the system as in equilibrium
with a heatre  oir at a common temperature T and studying the statistics of the
energy exchange between the two. The other consists in regarding the system as a
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member of a canconical ensemble (V, V, T'), in w an energy ¢ is being shared
by . 1 identical systems constituting the ensemble, and studying the statistics of
this sharing process. We expect that in the thermodynamic limit the final result in
either case would be the same. Once P, is determined, the rest follows without
difficulty.

3.1. Equilibrium between a system and a heat resérvoir

We consider the given system A, immersed in a very large heat reservoir A’; see
Fig. 3.1. On attaining a state of mutual equilibrium, the system and the reservoir
would have a common temperature, T say. Their energies, however, would be
variable and, in principle, could have, at any time 1, values lying anywhere between
0 and E©, where E© denotes the energy of the composite system A (= A +
A’). If, at any particular instant of time, the system A happens to be in a state
characterized by the energy value E,, then the reservoir would have an energy E,
such that

E,+E = E" = const. (1)

(E;T)

FiG. 3.1. A given system A immersed in a heat reservoir A’ in equilibrium, the two have
a common temperature 7.

Of course, since the reservoir is supposed to be much larger than the given system,
any practical value of E, would be a very small fraction of E; therefore, for all

practical purposes,
E _ (4 E, 1 2
ro =\ T ro ) €h (2)

With, the state of the system A having been specified, the reservoir A’ can still be
in any one of a large number of states compatible with the energy value E. Let the
number of these states be denoted by Q'(E’). The prime on the symbol £2 empha-
sizes the fact that its functional form will depend upon the nature of the reservoir;
of course, the details of this dependence are not going to be of any particular
relevance to our final results. Now, the larger the number of states available to
the reservoir, the larger the probability of the reservoir assuming that particular
energy value E (and, hence, of the system A assuming the corresponding energy
value E,). Moreover, since the various possible states (with a given energy value)
are equally likely to occur, the relevant probability would be directly proportional
to this number; thus,

P, Q(E) = QED—E,). (3)

In view of (2), we may carry out an expansion of (3) around the value E/, = E®,
i.e. around E, = 0. However, for reasons of convergence, it is essential to effect
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the expansiv. Jf its logarithm instead:
dln Q'
In Q’(Elr) =In Q’(E(O)) + (__n__) (E:_ _ E(O)) +.
BE’ EI=E(0)
= const — ﬁ’Er, (4)

where use has been made of formula (1.2.3), whereby

dln 2
( 73 )N_ﬁﬁ’ ©

note that, in equilibrium, 8/ = g = 1/kT. From (3) and (4), we obtain the desired
result:

P, o exp (—BE,). (6)

Normalizing (6), we get
exp (—PE;)

—~ , (7
> exp(—BE))

r

where the summation in the denominator goes over all states accessible to the
system A. We note that our final formula (7) bears no relation whatsoever to the
physical nature of the reservoir A’.

We now examine the same problem from the ensemble point of view.

3.2. A system in the canonical ensemble

We consider an ensemble of . |~ identical systems (which may be labelled as
1,2,...,. 1), sharing a total energy ¢ let E.(r=0,1,2....) denote the energy
eigenvalues of the systems. If r, denotes the number of systems which, at any
time ¢, have the energy value E,, then the set of numbers {n,} must satisfy the
obvious conditions Z

n,=.1"

E nkE =¢=.1U,
r

where U(= ¢ /. 1) denotes the average energy per system in the ensemble. Any
set {n,} which satisfies the restrictive conditions (1) represents a possible mode
of distribution of the total energy ¢ among the . |~ members of the ensemble.
Furthermore, any such mode can be realized in a number of ways, for we may
effect a reshuffle among those members of the ensemble for which the energy
values are different and thereby obtain a state of the ensemble which is distinct
from the original one. Denoting the number of different ways of doing so by the
symbol W{n,}, we have

(1)

1
Win} = —. (2)
nolntnal. ..
In view of the fact that all possible states of the ensemble, which are compatible
with conditions (1), are equally likely to occur, the frequency with which the
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distribution set {n,} may appear will be directly proportional to the number W{n,}.
Accordingly, the “most probable” mode of distribution will be the one for which
the number W is a maximum. We denote the corresponding distribution set by
{n}}; clearly, the set {n}} must also satisfy conditions (1). As will be seen in the
sequel, the probability of appearance of other modes of distribution, however little
they may be differing from the most probable mode, is extremely low! Therefore,
for all practical purposes, the most probable distribution set {n*} is the only one
we have to contend with.

However, unless this is mathematically demonstrated, one must take into account
all possible modes of distribution, as characterized by the various distribution sets
{r,}, along with their respective weight factors W{n,}. Accordingly, the expecra-
tion values, or mean values, (n,) of the numbers n, would be given by

> Win)
= (3)

Z’ W{n,} ‘

{nr}

where the primed summations go over all distribution sets that confoerm to condi-
tions (1). In principle, the mean value {n,), as a fraction of the total number . |,
should be a natural analogue of the probability P, evaluated in the preceding
scction. In practice, however, the fraction n}/. | is also the same.

‘We now proceed to derive expressions for the numbers n} and (n,), and to
show that, in the limit . |~ — oo, they are identical.

(1) The method of most probable values. Our aim here is to determine that distri-
bution set which, while satisfying conditions (1), maximizes the weight factor (2).
For simplicity, we work with In W instead:

InW=In(. 1))=Y In(n!). 4)

Since in the end we propose to resort to the limit . |~ — oo, the values of #, (which
are going to be of any practical significance) would also, in that limit, tend to
infinity. It is, therefore, justified to apply the Stirling formula, In (n') ~ nlnn — n,
to (4) and write

hW=.1"ln.{ =) alnn,. )

If we shift from the set {n,} to a slightly different set {n, + n,}, then expres-
sion (5) would change by an amount

dInW)=—> (Inn, + 1)én,. (6)

Now, if the set {r,} is maximal, the variation 8(In W) should vanish. At the same
time, in view of the restrictive conditions (1), the variations 8n, themselves must
satisfy the conditions
> én, =0
.

> E,én,=0.

* (7)
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The desired set {n*} is then determined by the method of Lagrange multipliers,®
by which the condition determining this set becomes

> {—Qnnf +1) —a — E,} n, =0, (8)

where « and B are the Lagrangian undetermined multipliers that take care of the
restrictive conditions (7). In (8), the variations 8n, become completely arbitrary;
accordingly, the only way to satisfy this condition is that all its coefficients must
vanish identically, i.e. for all r,

Inn’ = —(x+ 1) — BE,,

whence

nr = Cexp(—BE,), (9

where C is again an undetermined parameter. To determine C and 8, we subject
(9) to conditions (1), with the result that

ny exp (—BE;)

- = ) (10)
- z €Xp (—ﬁEr)
the parameter B being a solution of the equation
, Y Erexp(—FE,)
C
—=U=— . (1
- > exp(—BE,)

Combining statistical considerations with thermodynamic ones, see Sec. 3.3, we
can show that the parameter B here is exactly the same as the one appearing in
Sec. 3.1, i.e. B = 1/kT.

(ii) The method of mean values. Here we attempt to evaluate expression (3) for
(n,), taking into account the weight factors (2) and the restrictive conditions (1).
To do this, we replace (2) by

nownlwnz

- g oty L
Win} = nolnlnat... (12)

with the understanding that in the end all the w, will be set equal to unity, and
introduce a function ,
re1,U)= Z W{n,). (13)
{nr}

where the primed summation, as before, goes over all distribution sets that conform
to conditions (1). Expression (3) can then be written as

(n,) = w,ai(ln | )] (14)

Wy

all wr=1

Thus, all we ...ed to know here is the dependence of the quantity InT" on the
parameters w,. Now
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N U)_Jrz (wo w_lw_Z_) (15)

1
'} Hnal

but the summation appearing here cannot be evaluated explicitly because it is
restricted to those sets only which conform to the pair of conditions (1). If our
distribution sets were restricted by the condition }_ n, = .| alone, then the
evaluation of (15) would have been trivial; by the multinomial theorem, I'(. 1)
would have been simply (wo+ ey +---) . The added restriction > n.E, =
.1 'U, however, permits the inclusion of only a “limited” number of terms in the
sum—and that constitutes the real difficulty of the problem. Nevertheless, we can
still hope to make some progress because, from a physical point of view, we do
not require anything more than an asymptotic result—one that holds in the limit
. 1" — oo. The method commonly used for this purpose is the one developed by
Darwin and Fowler (1922a,b, 1923), which itself makes use of the saddle-point
method of integration or the so-called method of steepest descent.
We construct a generating function G(.V, z) for the quantity I'(. |, U):

G(-1,2)=» T(.1.Uz"Y (16)

U=0

which, in view of egn. (15) and the second of the restrictive conditions (1), may
be written as

x< , [ n
G120y =)Y_|> PR (a)ngU) (enz"1)™ ... (17
U=0 | [n,}

It is easy to see that the summation over doubly restricted sets {n,}, followed by a
summation over all possible values of U, is equivalent to a summation over singly
restricted sets {n,}, viz. the ones that satisfy only one condition: >, n,= 1"
Expression (17) can, therefore, be evaluated with the help of the multinomial
theorem, with the result

G(. 17,2) = (0o + ang™ +---)°
=[f@I"', say. (18)

Now, if we suppose that the E, (and hence the total energy values & = ..1°U) are
all integers, then, by (16), the quantity I'(. ¢, U) is simply the coefficient of z* v
in the expansion of the function G(.17, z) as a power series in z. It can. therefore,
be evaluated by the method of residues in the complex z-plane.

To make this plan work, we assume to have chosen, right at the outset, a unit
of energy so small that, to any desired degree of accuracy, we can regard the
energies E, (and the prescribed total energy . ! U) as integral multiples of this
unit. In terms of this unit, any energy value we come across will be an integer.
We further assume, without loss of generality, that the sequence Eg, Ey, ... is a
nondecreasing sequence, with no common divisor;? also, for the sake of simplicity,
we assume that £y = 0.% The solution now is

. 1 rf@)"
F(vl,(])=% ZJ—U-[-].d’

(-

(19)
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where the 1 ration is carried along any closed contour around the origin; of
course, we should stay within the circle of convergence of the function f(<), so
that a need for analytic continuation does not arise.

First of all we examine the behavior of the integrand as we proceed from the
origin along the real positive axis, remembering that all our w are virtually equal
to unity and that 0 = Eg < E, < Ez---. We find that the factor [f(z)] I starts
from the value 1 at z =0, increases monotonically and tends to infinity as z
approaches the circle of convergence of f(z), wherever that may be. The factor
;~CHU*D on the other hand, starts from a positive, infinite value at z =0 and
decreases monotonically as : increases. Moreover, the relative rate of increase of
the factor [ f(2)] " itself increases monotonically while the relative rate of decrease
of the factor 7' U+ decreases monotonically. Under these circumstances, the
integrand must exhibit a minimum (and no other extremum) at some value of g,
say Xp, within the circle of convergence. And, in view of the largeness of the
pumbers . [~ and . | 'U, this minimum may indeed be very steep!

Thus, at z = xg the first derivative of the integrand must vanish, while the second
derivative must be positive and, hopefully, very large. Accordingly, if we proceed
through the point = = x¢ in a direction orthogonal to the real axis, the integrand
must exhibit an equally steep maximum.® Thus, in the complex z-plane, as we
move along the real axis our integrand shows a minimum at £ == xg, whereas if
we move along a path parallel to the imaginary axis but passing through the point
z = xg, the integrand shows a maximum there. It is natural to call the point Xq
a saddle point; see Fig. 3.2. For the contour of integration we choose a circle,
with center at = = 0 and radius equal to xo, hoping that on integration along this
contour only the immediate neighborhood of the sharp maximum at the point xq
will make the most dominant contribution to the value of the integral.®

lexp{. 1g@)}
A
Saddle
Point
1
£ :
/xf » Rez
0 0

Contour of integration

FIG. 3.2. The saddle point.

To carry out the integration we first locate the point xy. For this we write our
integrand as

[f&]

- FU+1

=exp[. ¢ g(@)]. (20)
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where .
gz)y=Inf(z)— (U + —‘) Inz, (21)
while
f@) =) zf. (22)
The number xp is then determined by the equation
] f’(xU) AU+1
(x0) = — - =0 (23)
&0 fx) < xg
which, in view of the fact that . I"U 3> 1. can be written as
, Z w.E ,xOE’
U~ X()f (xOV) __r ) (24)
S (o) Z wrxg”
We further have
" f'Go)  [f o)) AU+1
fx)  [fO0))? - xg
" U2 U
~ f_ (x0) . (25)
J (xp) X0
It will be noted here that, in the limit . {"— oc and £(= .| U) —» oo, with

U staying constant, the number xy and the quantity g"”(x) becomc indcpendent
of . I, :

Expanding g(z) about the point ; = xp, along the direction of integration, i.c.
along the line 7z = xp + iy. we have

g(Z) = g(xﬂ) -_ %g”(x(])-\‘z + SR
accordingly, the integrand (20) might be approximated as
e

U+l

e
——g"(Xn))'Z] : (26)
x) 2

Equation (19) then gives

R 10 S N ,2] -
L, Uy~ 2mi xg U+ [exp[ 5 8 (o) y”| i dy
e 1
- xﬁl'U+1 ' {znbl'gn(xo)}lﬂ’ (27)
whence
1’,_ Inl(.(,U)={lnf(xg) — Ulnxy} — - Inxg — 21l “In (27, 1 'g" (xp)}.

(28)
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In the limit . (" — oo (with U staying constant), the last two terms in this expres-
sion tend to zero, with the result

1
- InT( 1 ,U)=1n f(x) — U Inxn. (29)

Substituting for f(xp) and introducing a new variable g, defined by the relationship
xp = exp (—B). (30)

we get

[

! InT(.1.U0)=1 4 L 1
—-ITC I Uy =M1 o exp(—pE,) o + AU. (31)

r

The expectation value of the number n, then follows from (14) and (31):

Z err eXP (_ﬁEr)
{n,) _ wy exp (—BE,) ¥

) - +U o,
L;r > w,exp(—BE,) > " wy exp (—BE;) e,

all =1

(32)
The term inside the curly brackets vanishes identically because of (24) and (30).
It has been included here to emphasize the fact that, for a fixed value of U, the
aumber B(= —Inxg) in fact depends upon the choice of the w,; see (24). We
#ill appreciate the importance of this fact when we evaluate the mean square
fuctuation in the number #n,; in the calculation of the expectation value of n,, this
does not really matter. We thus obtain

{r,) _exp (—pBE,)

- = . (33)
<Y exp(—pE)

which is identical with expression (10) for n}/. . The physical significance of
"he parameter £ is also the same as in that expression, for it is determined by
2qn. (24), with all &, =1, i.e. by eqn. (11) which fits naturally with eqn. (33)
secause U/ is nothing but the ensemble average of the variable E,:

1
U= EP, = — E (n,). 34
Z - Z (n,) (34)
Finally, we compute fluctuations in the values of the numbers #,. We have, first
of all,
Z an{n,}
1 d d
mH=r - (w,—) (w, ) r . (35)
Z Win,} r Oy deor /- lait wp=1

{nr}
see eqns (12)—(14). It follows that

7 2 2 2 Jd Jd
((Anp )y =({n, — (n,)}) =(n)) — (0} = ( ) (w ——) (InT")

wr ¥
do, dw,

all enp=1

(36)
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Substituting from (31) and making use of (32), we get

((A”r)z) d wr EXP (_ﬁEr)
D2 —
oA Bw, Zwr exp (—ﬁEr)
r
> wErexp(—FE;)
; op
+4 — +U }wr— . (37
3wy exp (—BE)) Beor
r all wr=1

We note that the term in the curly brackets would not make any contribution
because it is identically zero, whatever the choice of the w,. However, in the
differentiation of the first term, we must not forget to take into account the implicit
dependence of g on the wy, which arises from the fact that unless the @ are sel
equal to unity the relation determining B does contain «,; se¢ eqns (24) and (30).
whereby

Z o Erexp (—PE;)

U= (38
Y w exp(—fE)
r all wy=1
A straightforward calculation gives
( aﬁ ) — E, - U (nr) (39
20 ) vl s (ED U E
We can now evaluate (37), with the result
An,)? n, ’ 2 n, d
any ) (0}, 00 g,y (%)
< - . o door / yla w,=1
2
_ tm) {1 ) ) E-UP ] @
J | T HE, = UP)

For the relative fluctuation in n,, we have

(A"’)z L {1+ (B Uy } @1
(n,) T nyy U (E,—~U® )

As 17— oc. {n,) also — oo, with the result that the relative fluctuations in n
tend to zero; accordingly, the (canonical) distribution becomes infinitely sharp an
with it the mean value, the most probable value—in fact, any values of n, th
appear with nonvanishing probability—become essentially the same. And that is t
reason why two wildly different methods of obtaining the canonical distributic
followed in this section have lcd to identical results.
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3.3. Physica _nificance of the various statistical quantities in the canonical
ensemble

We start with the canonical distribution

. (nr) €Xp (_ﬁEr)

Pr = - - ’
7> exp(—gE))

(1)

where B is determined by the equation
ZE, exp(—BE,)

U =
> exp(—BE,)

= _% In {Zexp (—ﬁE,)} (2)

r

We now look for a general recipe to extract information about the various macro-
scopic properties of the given system on the basis of the foregoing statistical results.
For this we recall certain thermodynamic relationships involving the Helmholtz
free energy A(= U — T§), namely

dA=dU —TdS —SdT = —-SdT — PdV + pdN, 3

N." N.T 'Ll - i)N V.7 ' )

U—A+TS~A_T(§4) 7 [3 (é)] B [B(A/T)] )
- N T [y a7 \T/lnyv  L0Q/T)Iyy

where the various symbols have their usual meanings. Comparing (5) with (2),
we infer that there exists a close correspondence between the quantities that enter
through the statistical treatment and the ones that come from thermodynamics, viz.

1 A
g= e In {Z:exp (—f}E,)} =1 (6)

where k is a universal constant yet to be determined; soon we shall see that k is
indeed the Boltzmann constant.

Equations (6) constitute the most fundamental result of the canonical ensemble
theory. Customarily, we write it in the form

AN, V,T)= —kTInQy(V, T), (7)

where

On(V.T)=> _exp(—E,/kT). (8)

The quantity Qn(V, T) is referred to as the partition function of the system;
sometimes, it is also called the “sum-over-states” (German: Zustandssunune). The
dependence of Q on T is quite obvious. The dependence on N and V comes
through the energy eigenvalues E,; in fact, any other parameters that might govern
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the values E, should also appear in the argument of Q. Moreover, for the quan-
tity A(N, V,T) to be an extensive property of the system, In ) must also be an
extensive quantity.

Once the Helmholtz free energy is known, the rest of the thermodynamic quan-
tities follow straightforwardly. While the entropy, the pressure and the chemical
potential are obtained from formulae (4), the specific heat at constant volume

follows from , )
U 0-A
o /yv a7 NV

and the Gibbs free energy from

0A d0A

G=A+PV=A-V|— =N|[|— = Nyu; 10
M (BV)N,T (BN)V,T K (1o

see Problem 3.5.
At this stage it appears worthwhile to make a few remarks on the foregoing
results. First of all, we note from eqns (4) and (6) that the pressure P is given by

o,
Z Sy %P (—BE,)

P=-1 , (11)
Zexp (—BE,)

so that
PdV =->"P,dE, = —dU. (12)
r

The quantity on the right-hand side of this equation is clearly the change in the
average energy of a system (in the ensemble) during a process that alters the
energy levels E,, leaving the probabilities P, unchanged. The left-hand side then
tells us that the volume change dV provides an example of such a process, and
the pressure P is the “force” accompanying that process. The quantity P, which
was introduced here through the thermodynamic relationship (3), thus acquires a
mechanical meaning as well.
Next, about the entropy. Since P, = Q' exp (—pE,), it follows that

(InpP,) = —InQ - B(E,) = B(A — U) = —S/k,

with the result that
S=~knP,)=—k) P,InP,. (13)

This is an extremely interesting relationship, for it shows that the entropy of a
physical system is solely and completely determined by the probability values P,
(of the system being in different dynamical states accessible to it)!

From the very look of it, eqn. (13) appears to be of fundamental importance;
indeed, it admits of a number of interesting conclusions. One of these relates to a
system in its ground state (7 = 0 K). If the ground «*-te is unique, then the system
is sure to be found in this particular state and inno  _r; consequently, P, is equal
to 1 for this state and O for all others. Equation (13) then tells us that the entropy
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of the system is precisely zero, which is essentially the content of the Nernst
heat theorem ot the third law of thermodynamics.” We also infer that vanishing
entropy and perfect statistical order (which implies complete predictability about
the system) go together. As the number of accessible states increases, more and
more of the P become nonzero; the entropy of the system thereby increases. As
the number of states becomes exceedingly large, most of the P-values become
exceedingly small (and their logarithms assume large, negative values); the net
result is that the entropy becomes exceedingly large. Thus, the largeness of entropy
and the high degree of statistical disorder (or unpredictability) in the system also
go together.

It is because of this fundamental connection between entropy on one hand and
lack of information on the other that formula (13) became the starting point of the
pioneering work of Shannon (1948, 1949) in the theory of communication.

1t may be pointed out that formula (13) applies in the microcanonical ensemble
as well. There, for each member system of the ensemble, We have a group of Q
states, all equally likely to occur. The value of P, is, then, 1/2 for each of these
states and O for all others. Consequently,

Q
1 1
r=1

which is precisely the central result in the microcanonical ensemble theory; see
eqn. (1.2.6) or (2.3.6).

3.4. Alternative expressions for the partition function

In most physical cases the energy levels accessible to a system are degenerate,
i.e. one has a group of states, g; in number, all belonging to the same energy value
E;. In such cases it is more useful to write the partition function (3.3.8) as

On(V.T)=_ giexp(—pE); (1)

the corresponding expression for P;, the probability that the system be in a state
with energy E;, would be
P, — gi exp (—PEi)

— : 2)
> giexp(—BED)

Clearly, the g; states with a common energy E; are all equally likely to occur.
As a result, the probability of a system having energy E; becomes proportional to
the multiplicity g; of this level; g; thus plays the role of a “weight factor” for the
level E;. The actual probability is then determined by the weight factor g; as well
as by the Boltzmann factor exp (—BE;) of the level, as we have in (2). The basic
relations established in the preceding section remain unaffected.

Now, in vi  of the largeness of the number of particles constituting a given
system and th. .argeness of the volume to which these particles are confined,
the consecutive energy values E; of the system are, in general, very close to
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one another. Accordingly, there lie, within a1 zasonable interval of energy
(E.E + dE), a very large number of energy levels. One may then regard E as a
continuous variable and write P(E) dE for the probability that the given system, as
a member of the canonical ensemble, may have its energy in the range (E, E + dE).
Clearly, this will be given by the product of the relevant single-state probability
and the number of energy states lying in the specified range. Denoting the latter
by g(E)dE, where g(E) denotes the density of states around the energy value E,
we have

P(E)dE ocexp(—BE)g(E)dE 3)

which, on normalization, becomes

P(E)dE — O:«XP(—ﬁE)g(E)dE )

J exp (—BE)g(E)dE
0

The denominator is clearly another expression for the partition function of the
system:

Onv(V.T) = [ePrg(E)dE. (5)
0

The expression for (f), the expectation value of a physical quantity f, may now
be written as
—PE; 20
Z F(Ei)gie ™ [ f(E)e PEg(EYdE
0

(fr=3 fiPi= ‘Z e . ©
; 8 [ e FEg(E)dE
i 0

Before proceeding further, we take a closer look at eqn. (5). With g > 0, the
partition function Q(p) is just the Laplace transform of the density of states g(E).
We may, therefore, write g(E) as the inverse Laplace transform of Q(8):

B +ico
1
§(E) = 5 j FEQ(BYAB (B > 0) )
JTl
B —ioo
_1 / EHEEQ(R +ig") dB". 8
2

where B is now treated as a complex variable, g’ + i8”, while the path of integra-
tion runs parallel to, and to the right of, the imaginary axis, i.e. along the straight
line Re B = B’ > 0. Of course, the path may be continuously deformed so long as
the integral converges.

3.5. The classical systems

The theory developed in the preceding sections is of very general applicability.
It applies to systems in which quantum-mechanical effects are important as well
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as to those t.... can be treated classically. In the latter case, our formalism may
be written in the language of the phase space; as a result, the summations over
quantum states get replaced by intcgrations over phase space.

We recall the concepts developed in Secs 2.1 and 2.2, especially formula (2.1.3)
for the ensemble average (f) of a physical quantity f (g, p), namely

[ f(g. p)e(g. p)d*qd*p
[ plg. p)d3q d3¥p

where p(g, p) denotes the density of the representative points (of the systems) in
the phase space; we have omitted here the explicit dependence of the function p
on time ¢ because we are interested in the study of equilibrium situations only.
Evidently, the function p(g, p) is a measure of the probability of finding a repre-
sentative point in the vicinity of the phase point (g, p), which in turn depends
upon the corresponding value H(g, p) of the Hamiltonian of the system. In the
canonical ensemble,

(f) = 1)

p(g. p) xexp {—pH(q. p)} (2)

cf. eqn. (3.1.6). The expression for (f) then takes the form

_ ff(q- plexp (—pH)dw
T [exp(—fH)do

(F) 3)

where dw (= d*¥gd* p) denotes a volume element of the phase space. The
denominator of this expression is directly related to the partition function of the
system, However, to write the precise expression for the latter, we must take into
account the relationship between a volume element in the phase space and the
corresponding number of distinct quantum states of the system. This relationship
was established in Secs 2.4 and 2.5, whereby an element of volume dw in the

phase space corresponds to
dw

NS )

distinct quantum states of the system.® The appropriate expression for the partition
function would, therefore, be

1
QN(V, T) = N|h3N fe—ﬂH(‘]-P) dw, (5)

it is understood that the integration in (5) goes over the whole of the phase space.

As our first application of this formulation, we consider the example of an ideal
gas. Here, we have a system of N identical molecules, assumed to be monatomic
(so that there are no internal degrees of motion to be considered), confined to
a space of volume V and in equilibrium at temperature 7. Since there are no
intermolecular interactions to be taken into account, the energy of the system is
wholly kinetic:

N
H(g. p)= Z(p,z/Zm). (6)

i=1
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The partition function would then be

N
—(B/2m) Y, p2
fe (8/2m) X; p; H(d3q,d3p,-). (7

i=1

Onv(V,T) = NN

Integrations over the space coordinates are rather trivial; they yield a factor of V¥,
Integrations over the momentum coordinates are also quite easy, once we note that
integral (7) is simply a product of N identical integrals. Thus, we get

N | F N
On(V. T) = o f e 71T (4 p? dp) (8)
0
1 1Y
=5 [h_3 (2n'ka)3/'] ; (9)

here, use has been made of eqn. (B.13a). The Helmholtz free energy is then given
by, using Stirling’s formula (B.29),

N hl 3/2
A(N,V,T)= —kT InQy(V. T) = NkT [ln {V (zka) } _ ]J )

The foregoing result is identical with eqn. (1.5.8), which was obtained by following
a very different procedure. The simplicity of the present approach is, however,
striking. Needless to say, the complete thermodynamics of the ideal gas can be
derived from eqn. (10) in a straightforward manner. For instance,

3A N{ B\
p=(—) =kTml{Z , (11)
oN /vy r V \2zmkT

0A NkT
P=-— (—) = — (12)

____(aA v e 4V (2mmkT 2 s -
= (&), = {r (5) 43 )

These results are identical with the ones derived previously, namely (1.5.7), (1.4.2)
and (1.5.1a), respectively. In fact, the identification of formula (12) with the
ideal-gas law, PV = nRT, establishes the identity of the (hitherto undetermined)
constant k as the Boltzmann constant; see eqn. (3.3.6). We further obtain

and

= — [i(ln Q)]
E

[ 8 [A 3
_72 [ (q)} =A+TS=1NKT. (14
0B NV

aT \T 2
and so on.
At this stage we have an important remark to make. Looking at the form of
eqn. (8) and the manner in which it came about, we may write
{

1
On(V,T)= NT [Qu(V.T)) (15)
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where 01(V, T) may be regarded as the partition function of a single molecule in
the system. A little reflection shows that this result obtains essentially from the
fact that the basic constituents of our system are non-interacting (and hence the
total energy of the system is simply the sum of their individual energies). Clearly,
the situation will not be altered even if the molecules in the system had internal
degrees of motion as well. What is essentially required for eqn. (15) to be valid
is the absence of interactions among the basic constituents of the system (and, of
course, the absence of quantum-mechanical correlations).

Going back to the ideal gas, we could as well have started with the density
of states g(E). From eqn. (1.4.17), and in view of the Gibbs correction factor,
we have

ar 1

g(E) = — ( (16)

L1 V)N (2rem)y*¥/? LN
3E  N! {

) {(3N/2) - 1)!

Substituting this into eqn. (3.4.5), and noting that the integral involved is equal to
{(3N/2) — 1}1/B3*/2, we readily obtain

1 / VY /2mm\ M2
QN(ﬁ)=m(h—3) (ﬁ) . (17)

which is identical with (9). It may also be noted that if one starts with the single-
particle density of states (2.4.7), namely

2V .
ale) ~ %—(2"1)3/281/‘. (18)

computes the single-particle partition function,

7 e V [ 2zm\?
Ql(ﬁ)=/€ G(S)d8=zg( 5 ) (19)
0

and then makes use of formula (15), one arrives at the same result for Qn(V, T).

Lastly, we consider the question of determining the density of states, g(E),
from the expression for the partition function, Q(B), assuming that the latter is
already known; indeed, expression (9) for Q(B) was derived without making use
of any knowledge regarding the function g(£). According to eqn. (3.4.7) and (9),
we have

a B+i
E VN (2mn W /x eft d ’ > 0) (20
- - > ). 2
BB = \ i | P P )
B —ioc
Noting that, for all positive n,
s+ 5X xn )
—1__ e gs— for x>0 21)°

2mi s+l
s —inc O fOl’ X < 0.
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eqn. (20) becomes

VN (2am\3?  EGN/2)-1
- f E>0

g(E) = { NI ( 2 ) BN/ —1r T E= 22)
0 for E <9,

which is indeed the correct result for the density of states of an ideal gas; cf.
eqn. (16). The foregoing derivation may not appear particularly valuable because
in the present case we already knew the expression for g(E). However, cases do
arise where the evaluation of the partition function of a given system and the
consequent evaluation of its density of states turn out to be quite simple, whereas
a direct evaluation of the density of states from first principles happens to be
rather involved. In such cases, the method given here can indeed be useful; see,
for example, Problem 3.15 in comparison with Problems 1.7 and 2.8.

3.6. Energy fluctuations in the canonical ensemble: correspondence with the
microcanonical ensemble

In the canonical ensemble, a system can have energy anywhere between zero
and infinity. On the other hand, the energy of a system in the microcanonical
ensemble is restricted to a very narrow range. How, then, can we assert that the
thermodynamic properties of a system derived through the formalism of the canon-
ical ensemble would be the same as the ones derived through the formalism of the
microcanonical ensemble? Of course, we do expect that the two formalisms yield
identical results, for otherwise our whole scheme would be marred by inner incon-
ststency. And, indeed, in the case of an ideal classical gas the resulis obtained by
following one approach were precisely the same as the ones obtained by following
the other approach. What is the underlying reason for this equivalence?

The answer to this question is obtained by examining the actual extent of the
range over which the energies of the systems (in the canonical ensemble) have a
significant probability to spread; that will tell us the extent to which the canonical
ensemble really differs from the microcanonical one. To do this, we write down
the expression for the mean energy,

) " Elexp (—BE,)
U=(E)=-2Z ) (1)
) exp(—gE,)

and differentiate it with respect to the parameter B8, holding the energy values E,
constant; we obtain

2
. > EZexp(—fgE,) [Z E,exp (—ﬁE,J
_BE — _ r - : r >
2 P AE) [Z exp(*ﬁEr)}

= —(E%) + (E)%, @)
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whence it ft s that
2 2 2 oU 2 2
((AEY) = (E°) — {E)" = — % =kT°| — ) =kT"Cy. (3)
Note that we have here the specific heat at constant volume, because the partial

differentiation in (2) was carried out with the E, kept constant! For the relative
root-mean-square fluctuation in E, eqn. (3) gives

VIAED)] _ V&TCy)

75 U (4

which is O(N~1/2), N being the number of particles in the system. Consequently,
for large N (which is true for every statistical system) the relative r.m.s. fluctuation
in the values of E is quite negligible! Thus, for all practical purposes, a system
in the canonical ensemble has an energy equal to, or almost equal to, the mean
energy Uj; the situation in this ensemble is, therefore, practically the same as in the
microcanonical ensemble. That explains why the two ensembles lead to practically
identical results.

For further understanding of the situation, we consider the manner in which
energy is distributed among the various members of the (canonical) ensemble. To
do this, we treat E as a continuous variable and start from expression (3.-4.3),
namely

P(E)dE o exp(—BE)g(E)dE. (3.4.3)

The probability density P(E) is given by the product of two factors: (i) the Boltz-
mann factor, which monotonically decreases with E, and (ii) the density of states,
which monotonically increases with E. The product, therefore, has an extremum
at some value of E, say E*.1° The value E* is determined by the condition

J . _
iE {e P g(E)} e =0,
that is, by
dlng(E) _p (5)
OF |popr
Recalling that
dS(E 1
S=klng and —(2) = — =k
the foregoing condition implies that
E*=U. (6)

This is a very interesting result, for it shows that, irrespective of the phssical
nature of the given system, the most probable value of its energy is identical with
its mean value. Accordingly, if it is advantageous, we may use one instead of
the other.



